@article {Distefano2017382, title = {Hospitalized Patient Monitoring and Early Treatment Using IoT and Cloud}, journal = {BioNanoScience}, volume = {7}, number = {2}, year = {2017}, note = {cited By 0}, pages = {382-385}, publisher = {Springer New York LLC}, abstract = {

The adoption of Internet of Things devices and, more in general, embedded systems, endowed with sensors and actuators, keeps rising globally, and the scope of their involvement broadens, for instance in e-Health applications. This work describes our integration of IoT paradigms and resource ecosystems with a tailored Cloud-oriented device-centric environment, by focusing on an e-Health scenario, featuring monitoring and early treatment of hospitalized patients, by focusing on Cloud-enabled event detection coupled with coordinated reaction. {\textcopyright} 2016, Springer Science+Business Media New York.

}, keywords = {Clouds, Coordinated reactions, Coordination reactions, E health, e-Health applications, Early treatment, embedded systems, Event detection, Health, Internet of Things, OpenStack, Patient monitoring, Patient treatment, sensors and actuators}, issn = {21911630}, doi = {10.1007/s12668-016-0335-5}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019076002\&doi=10.1007\%2fs12668-016-0335-5\&partnerID=40\&md5=cd98d3d0b82a5392d0f5191656dee389}, author = {Salvatore Distefano and Dario Bruneo and Francesco Longo and Giovanni Merlino and Antonio Puliafito} } @proceedings {Bruneo2017135, title = {User-space network tunneling under a mobile platform: A case study for android environments}, journal = {ADHOC-NOW 2017: Ad-hoc, Mobile, and Wireless Networks}, year = {2017}, note = {cited By 0; Conference of 16th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW 2017 ; Conference Date: 20 September 2017 Through 22 September 2017; Conference Code:198729}, pages = {135-143}, publisher = {Springer Verlag}, address = {Messina; Italy; 20-22 September 2017}, abstract = {

The IoT ecosystem is taking the whole ICT world by storm and, in particular for currently hot topics such as Smart Cities, it is becoming one of the key enablers for innovative applications and services. When talking about end users, or even citizens, mobiles enter the picture as the ultimate personal gadget, as well as relevant outlets for most of the duties (sensing, networking, edge computing) IoT devices are typically envisioned in the first place. Smartphones, tablets and similar accessories are even more powerful in terms of hardware capabilities (and function diversity) than typical embedded systems for IoT, but it is typically the software platform (e.g., the OS and SDK) which limits choices for the sake of security and control on the user experience. Even a relatively open environment, such as Android, exhibits these limits, in stark contrast to the otherwise very powerful and feature-complete functionalities the underlying system (i.e., Linux) natively supports. In this work the authors describe a fully user-friendly and platform-compliant approach to let users break free from some of these limitations, in particular with regard to network virtualisation, for the purpose of extending an IoT-ready Smart City use case to mobiles. {\textcopyright} Springer International Publishing AG 2017.

}, keywords = {Ad hoc networks, Android (operating system), Clouds, Computer operating systems, Distributed computer systems, embedded systems, Internet of Things, Mobile ad hoc networks, Network virtualisation, network virtualization, Open environment, OpenStack, Reverse tunneling, Smart city, Software platforms, Stack4Things, Underlying systems, Virtual reality, Virtualization, Wireless ad hoc networks}, isbn = {9783319679099}, issn = {03029743}, doi = {10.1007/978-3-319-67910-5_11}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030154981\&doi=10.1007\%2f978-3-319-67910-5_11\&partnerID=40\&md5=e898f7c0ffad87eadbefa74a8a7a8940}, author = {Dario Bruneo and Salvatore Distefano and Kostya Esmukov and Francesco Longo and Giovanni Merlino and Antonio Puliafito} } @article {Merlino201516314, title = {A smart city lighting case study on an OpenStack-powered infrastructure}, journal = {Sensors}, volume = {15}, number = {7}, year = {2015}, note = {cited By 0}, pages = {16314-16335}, publisher = {MDPI AG}, abstract = {

The adoption of embedded systems, mobile devices and other smart devices keeps rising globally, and the scope of their involvement broadens, for instance, in smart city-like scenarios. In light of this, a pressing need emerges to tame such complexity and reuse as much tooling as possible without resorting to vertical ad hoc solutions, while at the same time taking into account valid options with regard to infrastructure management and other more advanced functionalities. Existing solutions mainly focus on core mechanisms and do not allow one to scale by leveraging infrastructure or adapt to a variety of scenarios, especially if actuators are involved in the loop. A new, more flexible, cloud-based approach, able to provide device-focused workflows, is required. In this sense, a widely-used and competitive framework for infrastructure as a service, such as OpenStack, with its breadth in terms of feature coverage and expanded scope, looks to fit the bill, replacing current application-specific approaches with an innovative application-agnostic one. This work thus describes the rationale, efforts and results so far achieved for an integration of IoT paradigms and resource ecosystems with such a kind of cloud-oriented device-centric environment, by focusing on a smart city scenario, namely a park smart lighting example, and featuring data collection, data visualization, event detection and coordinated reaction, as example use cases of such integration. {\textcopyright} 2015 by the authors; licensee MDPI, Basel, Switzerland.

}, keywords = {AMQP, Ceilometer, CEP, Clouds, CoAP, Coordination reactions, data visualization, embedded systems, IaaS, Infrastructure as a service (IaaS), IoT, Lighting, Meteorological instruments, Mobile devices, MOM, OpenStack, REST, smart cities}, issn = {14248220}, doi = {10.3390/s150716314}, url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-84940184863\&partnerID=40\&md5=6b5fc8b27ed3943f0529cb3323f22e88}, author = {Giovanni Merlino and Dario Bruneo and Salvatore Distefano and Francesco Longo and Antonio Puliafito and Adnan H. Al-Anbuky} } @proceedings {Merlino2015909, title = {Software defined cities: A novel paradigm for smart cities through IoT clouds}, journal = {Proceedings - 2015 IEEE 12th International Conference on Ubiquitous Intelligence and Computing, 2015 IEEE 12th International Conference on Advanced and Trusted Computing, 2015 IEEE 15th International Conference on Scalable Computing and Communications, 20}, year = {2015}, note = {cited By 1; Conference of Proceedings - 2015 IEEE 12th International Conference on Ubiquitous Intelligence and Computing, 2015 IEEE 12th International Conference on Advanced and Trusted Computing, 2015 IEEE 15th International Conference on Scalable Computing and Communications, 2015 IEEE International Conference on Cloud and Big Data Computing, 2015 IEEE International Conference on Internet of People and Associated Symposia/Workshops, UIC-ATC-ScalCom-CBDCom-IoP 2015 ; Conference Date: 10 August 2015 Through 14 August 2015; Conference Code:122811}, pages = {909-916}, publisher = {Institute of Electrical and Electronics Engineers Inc.}, address = {Beijing (China)}, abstract = {

A Smart City represents an improvement of today cities that strategically exploits many smart factors to increase the city sustainable growth and strengthen city functions, while ensuring citizen quality of life and health. Cities can be perceived as an ecosystem of "things" which citizens daily interact with: street furniture, public buildings, transportation, monuments, public lighting as well as personal smartphones. Thanks to recent advances in ICT such things can be considered always interconnected also providing sensing and actuating facilities according to the Internet of Things and Cyber Physical Systems models. Creating smart services that exploit such a complex infrastructure is a fundamental and current challenge. To this end, aim of this paper is the design and implementation of the Software Defined Cities approach: a Cloud-based infrastructure that, starting from the well known concept of Software Defined paradigms, is able to transform this complex ecosystem in a simple and "programmable" environment where municipalities, companies, scientists, and citizens can easily collaborate in developing innovative smart services. The overall architecture is presented focusing on both the function virtualization and infrastructure aspects also giving details about the software stacks used (e.g., Open Stack) while a use case is laid out to demonstrate the advantages of the proposed approach. {\textcopyright} 2015 IEEE.

}, keywords = {Big Data, Clouds, Complex ecosystems, Complex infrastructures, Cyber physical systems (CPSs), Design and implementations, Ecology, Ecosystems, embedded systems, Internet, Internet of Things, Sensing and actuating, smart cities, Sustainable development, Sustainable growth, Trusted Computing, Ubiquitous computing, Virtual reality, Virtualizations}, isbn = {9781467372114}, doi = {10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.174}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84983438378\&doi=10.1109\%2fUIC-ATC-ScalCom-CBDCom-IoP.2015.174\&partnerID=40\&md5=790a6042e6e80594e42b64695d6b014e}, author = {Giovanni Merlino and Dario Bruneo and Francesco Longo and Antonio Puliafito and Salvatore Distefano} } @proceedings {Longo2015204, title = {Stack4Things: An OpenStack-Based Framework for IoT}, journal = {Proceedings - 2015 International Conference on Future Internet of Things and Cloud, FiCloud 2015 and 2015 International Conference on Open and Big Data, OBD 2015}, year = {2015}, note = {cited By 2; Conference of 3rd International Conference on Future Internet of Things and Cloud, FiCloud 2015 ; Conference Date: 24 August 2015 Through 26 August 2015; Conference Code:117067}, pages = {204-211}, publisher = {Institute of Electrical and Electronics Engineers Inc.}, address = {Rome (Italy)}, abstract = {

In the wake of the massive adoption of embedded systems, mobiles, and other smart devices, as the scope of their involvement keeps broadening, complexity may quickly become overwhelming and vertical ad-hoc solutions will not cut it anymore. We propose to reuse as much tooling as possible, taking into account suitable options with regard to infrastructure management, then piggybacking as much advanced functionalities as possible in such kind of environment. In this sense, a widely used and competitive framework for Infrastructure-as-a-Service such as OpenStack, with its breadth in terms of feature coverage and expanded scope, looks like fitting the bill. This work therefore describes the approach and the solutions so far preliminary implemented for enabling Cloud-mediated interactions with droves of sensor-and actuator-hosting nodes by proposing Stack4Things, a framework for Sensing-and-Actuation-as-a-Service. In particular, we focused on describing the subsystem of Stack4Things devoted to resource control and management, highlighting relevant requirements and justifying how our proposed framework addresses them, while also opening up possibilities for a range of future extensions towards complete fulfillment of the Sensing-and-Actuation-as-a-Service vision. {\textcopyright} 2015 IEEE.

}, keywords = {Big Data, Clouds, embedded systems, Infrastructure as a service (IaaS), Infrastructure managements, Internet, Internet of Things, Mediated interaction, OpenStack, Resource control, SAaaS, Sensor and actuators, WAMP, Web Socket}, isbn = {9781467381031}, doi = {10.1109/FiCloud.2015.97}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84959059371\&doi=10.1109\%2fFiCloud.2015.97\&partnerID=40\&md5=e702319ada1b2cdde5d5d2061ec278f7}, author = {Francesco Longo and Dario Bruneo and Salvatore Distefano and Giovanni Merlino and Antonio Puliafito} } @proceedings {Merlino201521, title = {Stack4Things: Integrating IoT with OpenStack in a Smart City context}, journal = {Proceedings of the 2014 International Conference on Smart Computing Workshops (SMARTCOMP Workshops)}, year = {2014}, note = {cited By 1; Conference of 2014 International Conference on Smart Computing Workshops, SMARTCOMP Workshops 2014 ; Conference Date: 5 November 2014; Conference Code:111083}, pages = {21-28}, publisher = {IEEE Computer Society}, address = {Hong Kong, China, 5 November 2014}, abstract = {

As the adoption of embedded systems, mobiles and other smart devices keeps rising, and the scope of their involvement broadens, for instance in the enablement of Smart City-like scenarios, a pressing need emerges to tame such complexity and reuse as much tooling as possible without resorting to vertical ad-hoc solutions, while at the same time taking into account valid options with regards to infrastructure management, and other more advanced functionalities. In this sense, a widely used and competitive framework for Infrastructure as a Service such as OpenStack, with its breadth in terms of feature coverage and expanded scope, looks like fitting the bill. This work thus describes rationale, efforts, and results so far achieved, for an integration of IoT paradigms and resource ecosystems with such a kind of Cloud-oriented environment, by focusing on a Smart City scenario, and featuring data collection and visualization as example use cases of such integration. {\textcopyright} 2014 IEEE.

}, keywords = {AMQP, Ceilometer, CEP, Clouds, CoAP, data visualization, embedded systems, IaaS, Infrastructure as a service (IaaS), Internet of Things, IoT, Meteorological instruments, MOM, OpenStack, REST, smart cities}, isbn = {9781479964475}, doi = {10.1109/SMARTCOMP-W.2014.7046678}, url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-84925651440\&partnerID=40\&md5=d36947c633a2c7b011bffa40aa32db9f}, author = {Giovanni Merlino and Dario Bruneo and Salvatore Distefano and Francesco Longo and Antonio Puliafito} }