@proceedings {Bruneo201384, title = {Analytical evaluation of resource allocation policies in green IaaS clouds}, journal = {Proceedings of the IEEE 3rd International Conference on Cloud and Green Computing (CGC) Co-located with the IEEE 3rd International Conference on Social Computing and Its Applications (SCA)}, year = {2013}, note = {cited By 1; Conference of 3rd IEEE International Conference on Cloud and Green Computing, CGC 2013, Held Jointly with the 3rd IEEE International Conference on Social Computing and Its Applications, SCA 2013 ; Conference Date: 30 September 2013 Through 2 October 2013; Conference Code:102391}, pages = {84-91}, publisher = {IEEE Computer Society}, address = {Karlsruhe, Germany, 30 September - 2 October 2013}, abstract = {

Cloud systems represent the new ICT frontier where computing utilities are offered in terms of virtual instances, following the so called as-a-service philosophy. Different commercial solutions have been already put in place but several aspects need to be faced in order to provide high-value services able to meet business requirements. In particular, performance evaluation plays a critical role being strictly related to data center optimization and user satisfaction. Moreover, the use of large data centers able to respond to the high service demand has increased the attention to power efficiency, thus calling for green solutions and energy-aware strategies that jointly consider environmental and economical aspects. In order to design powerful strategies able to meet the quality of service requirements still reducing the energy costs, performance analysis frameworks are needed. In this paper, we present an analytical model, based on stochastic reward nets, that is able to easily implement resource allocation strategies in a green infrastructure as-a-service cloud. The model is organized into layers that represent the virtual resource pool and the physical machines. Different allocation algorithms (i.e., scattering, saturation) have been implemented by properly managing the coordination between the model layers. Numerical results are provided that demonstrate the effectiveness of the proposed approach. {\textcopyright} 2013 IEEE.

}, keywords = {Analytical evaluation, cloud computing, Distributed computer systems, Green Computing, Performance analysis, Performance evaluation, Quality of service, Resource allocation, Resource allocation policy, Resource allocation strategies, Service requirements, Stochastic reward nets, Stochastic systems}, isbn = {9780769551142}, doi = {10.1109/CGC.2013.21}, url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-84893329592\&partnerID=40\&md5=369f37efc4aabea38300336d819db864}, author = {Dario Bruneo and Audric Lhoas and Francesco Longo and Antonio Puliafito} }