@article {Dautov201829822, title = {Data Processing in Cyber-Physical-Social Systems Through Edge Computing}, journal = {IEEE Access - IEEE}, volume = {6}, year = {2018}, note = {cited By 0}, pages = {29822-29835}, publisher = {Institute of Electrical and Electronics Engineers Inc.}, abstract = {

Cloud and Fog computing have established a convenient and widely adopted approach for computation offloading, where raw data generated by edge devices in the Internet of Things (IoT) context is collected and processed remotely. This vertical offloading pattern, however, typically does not take into account increasingly pressing time constraints of the emerging IoT scenarios, in which numerous data sources, including human agents (i.e., Social IoT), continuously generate large amounts of data to be processed in a timely manner. Big data solutions could be applied in this respect, provided that networking issues and limitations related to connectivity of edge devices are properly addressed. Although edge devices are traditionally considered to be resource-constrained, main limitations refer to energy, networking, and memory capacities, whereas their ever-growing processing capabilities are already sufficient to be effectively involved in actual (big data) processing. In this context, the role of human agents is no longer limited to passive data generation, but can also include their voluntary involvement in relatively complex computations. This way, users can share their personal computational resources (i.e., mobile phones) to support collaborative data processing, thereby turning the existing IoT into a global cyber-physical-social system (CPSS). To this extent, this paper proposes a novel IoT/CPSS data processing pattern based on the stream processing technology, aiming to distribute the workload among a cluster of edge devices, involving mobile nodes shared by contributors on a voluntary basis, and paving the way for cluster computing at the edge. Experiments on an intelligent surveillance system deployed on an edge device cluster demonstrate the feasibility of the proposed approach, illustrating how its distributed in-memory data processing architecture can be effective. {\textcopyright} 2013 IEEE.

}, keywords = {Apache NiFi, Big Data, Cameras, Cellular telephone systems, cloud computing, Cluster computing, Computer architecture, Cyber physical social systems, Cyber Physical System, Edge computing, Fog computing, Horizontal and Vertical Offloading, Internet of Things, Media streaming, Network security, Servers, Stream processing, Streaming media}, issn = {21693536}, doi = {10.1109/ACCESS.2018.2839915}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047619039\&doi=10.1109\%2fACCESS.2018.2839915\&partnerID=40\&md5=48b52a73084c2f6396c4ce1dd6a690f4}, author = {Rustem Dautov and Salvatore Distefano and Dario Bruneo and Francesco Longo and Giovanni Merlino and Antonio Puliafito} } @article {Dautov20181475, title = {Metropolitan intelligent surveillance systems for urban areas by harnessing IoT and edge computing paradigms}, journal = {Software - Practice and Experience - John Wiley \& Sons, Ltd.}, volume = {48}, number = {8}, year = {2018}, note = {cited By 0}, pages = {1475-1492}, publisher = {John Wiley and Sons Ltd}, abstract = {

Recent technological advances led to the rapid and uncontrolled proliferation of intelligent surveillance systems (ISSs), serving to supervise urban areas. Driven by pressing public safety and security requirements, modern cities are being transformed into tangled cyber-physical environments, consisting of numerous heterogeneous ISSs under different administrative domains with low or no capabilities for reuse and interaction. This isolated pattern renders itself unsustainable in city-wide scenarios that typically require to aggregate, manage, and process multiple video streams continuously generated by distributed ISS sources. A coordinated approach is therefore required to enable an interoperable ISS for metropolitan areas, facilitating technological sustainability to prevent network bandwidth saturation. To meet these requirements, this paper combines several approaches and technologies, namely the Internet of Things, cloud computing, edge computing and big data, into a common framework to enable a unified approach to implementing an ISS at an urban scale, thus paving the way for the metropolitan intelligent surveillance system (MISS). The proposed solution aims to push data management and processing tasks as close to data sources as possible, thus increasing performance and security levels that are usually critical to surveillance systems. To demonstrate the feasibility and the effectiveness of this approach, the paper presents a case study based on a distributed ISS scenario in a crowded urban area, implemented on clustered edge devices that are able to off-load tasks in a {\textquotedblleft}horizontal{\textquotedblright} manner in the context of the developed MISS framework. As demonstrated by the initial experiments, the MISS prototype is able to obtain face recognition results 8 times faster compared with the traditional off-loading pattern, where processing tasks are pushed {\textquotedblleft}vertically{\textquotedblright} to the cloud. Copyright {\textcopyright} 2018 John Wiley \& Sons, Ltd.

}, keywords = {Big Data, cloud computing, Distributed Smart Cameras, Edge computing, Face recognition, Information management, Intelligent surveillance systems, Internet of Things, monitoring, Multiple video streams, Network security, Public safety and securities, Security systems, Smart city, Stack4Things, Stream processing, Surveillance systems, Technological advances}, issn = {00380644}, doi = {10.1002/spe.2586}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049578094\&doi=10.1002\%2fspe.2586\&partnerID=40\&md5=25de910451975bb24c9cfbdf6ca69066}, author = {Rustem Dautov and Salvatore Distefano and Dario Bruneo and Francesco Longo and Giovanni Merlino and Antonio Puliafito and Rajkumar Buyya} } @proceedings {Dautov2017, title = {Towards a global intelligent surveillance system}, journal = {11th International Conference on Distributed Smart Cameras, ICDSC 2017}, year = {2017}, note = {cited By 2; Conference of 11th International Conference on Distributed Smart Cameras, ICDSC 2017 ; Conference Date: 5 September 2017 Through 7 September 2017; Conference Code:132201}, publisher = {Association for Computing Machinery}, address = {Stanford, USA - 05-07 September 2017}, abstract = {

Recent technological advances have led to the rapid development of Intelligent Surveillance Systems (ISSs), ubiquitously present in modern urban spaces are constantly generating streams of raw data. As most of the actual Internet traffic is nowadays constituted by visual data streams, often originated by ISSs, it is important to properly manage these avalanches of data so as to support sustainability of this technological trend, which will very likely saturate the current network bandwidth in few years. This paper aims to combine existing technologies and paradigms from the Internet of Things, Cloud, Edge Computing and Big Data into a common framework to enable a shared approach for ISSs at a wide geographical scale, thus envisioning a Global ISS. The proposed solution is based on the idea of pushing data processing tasks as close to data sources as possible, thus increasing security and performance levels, usually critical to surveillance systems. To demonstrate the feasibility and the effectiveness of the proposed approach, the paper presents a case study based on a distributed ISS scenario in a crowded area, implemented on clustered edge devices able to offload tasks in a {\textquoteright}horizontal{\textquoteright} manner. {\textcopyright} 2017 Association for Computing Machinery.

}, keywords = {Big Data, Clouds, Edge, Geographical scale, Information management, Intelligent surveillance systems, Internet of Things, monitoring, Network security, Security and performance, Security systems, Stream processing, Surveillance systems, Technological advances, Technological trends}, doi = {10.1145/3131885.3131918}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047726635\&doi=10.1145\%2f3131885.3131918\&partnerID=40\&md5=a84eba85cc0facc8c5bb0cd664d7d5f0}, author = {Rustem Dautov and Salvatore Distefano and Giovanni Merlino and Dario Bruneo and Francesco Longo and Antonio Puliafito} }