@proceedings {Merlino2015268, title = {Enabling mechanisms for Cloud-based network virtualization in IoT}, journal = {IEEE World Forum on Internet of Things, WF-IoT 2015 - Proceedings}, year = {2015}, note = {cited By 3; Conference of 2nd IEEE World Forum on Internet of Things, WF-IoT 2015 ; Conference Date: 14 December 2015 Through 16 December 2015; Conference Code:119271}, pages = {268-273}, publisher = {Institute of Electrical and Electronics Engineers Inc.}, address = {Milan (Italy)}, abstract = {

As part of a wider effort in integrating Internet of things (IoT) with the Cloud under the guise of infrastructure to be provided as-a-Service, network virtualization plays an essential role, both as an enabler of Infrastructure-as-a-Service scenarios and as a basic building block of the solution for the IoT-focused Cloud provider. Virtualization of the networking facilities for Cloud-managed IoT resources needs mechanisms to deal with the inherent complexity. This work outlines an implementation-agnostic approach to such a problem, reflected in our evolving Stack4Things architecture, derived from OpenStack, and implemented starting from such codebase, by leveraging also a choice of modern tooling and protocols. A specific use case and the discussion that follows are provided to frame the benefits of this strategy. {\textcopyright} 2015 IEEE.

}, keywords = {Basic building block, Cloud providers, Clouds, Complex networks, Infrastructure as a service (IaaS), Inherent complexity, Internet, Internet of Things, Internet of Things (IOT), Network architecture, network virtualization, OpenStack, Virtual reality, Virtualizations, WebSocket}, isbn = {9781509003655}, doi = {10.1109/WF-IoT.2015.7389064}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964453184\&doi=10.1109\%2fWF-IoT.2015.7389064\&partnerID=40\&md5=555a2a5aad4f3af24fac04fc0e4a8280}, author = {Giovanni Merlino and Dario Bruneo and Salvatore Distefano and Francesco Longo and Antonio Puliafito} } @proceedings {Merlino2015909, title = {Software defined cities: A novel paradigm for smart cities through IoT clouds}, journal = {Proceedings - 2015 IEEE 12th International Conference on Ubiquitous Intelligence and Computing, 2015 IEEE 12th International Conference on Advanced and Trusted Computing, 2015 IEEE 15th International Conference on Scalable Computing and Communications, 20}, year = {2015}, note = {cited By 1; Conference of Proceedings - 2015 IEEE 12th International Conference on Ubiquitous Intelligence and Computing, 2015 IEEE 12th International Conference on Advanced and Trusted Computing, 2015 IEEE 15th International Conference on Scalable Computing and Communications, 2015 IEEE International Conference on Cloud and Big Data Computing, 2015 IEEE International Conference on Internet of People and Associated Symposia/Workshops, UIC-ATC-ScalCom-CBDCom-IoP 2015 ; Conference Date: 10 August 2015 Through 14 August 2015; Conference Code:122811}, pages = {909-916}, publisher = {Institute of Electrical and Electronics Engineers Inc.}, address = {Beijing (China)}, abstract = {

A Smart City represents an improvement of today cities that strategically exploits many smart factors to increase the city sustainable growth and strengthen city functions, while ensuring citizen quality of life and health. Cities can be perceived as an ecosystem of "things" which citizens daily interact with: street furniture, public buildings, transportation, monuments, public lighting as well as personal smartphones. Thanks to recent advances in ICT such things can be considered always interconnected also providing sensing and actuating facilities according to the Internet of Things and Cyber Physical Systems models. Creating smart services that exploit such a complex infrastructure is a fundamental and current challenge. To this end, aim of this paper is the design and implementation of the Software Defined Cities approach: a Cloud-based infrastructure that, starting from the well known concept of Software Defined paradigms, is able to transform this complex ecosystem in a simple and "programmable" environment where municipalities, companies, scientists, and citizens can easily collaborate in developing innovative smart services. The overall architecture is presented focusing on both the function virtualization and infrastructure aspects also giving details about the software stacks used (e.g., Open Stack) while a use case is laid out to demonstrate the advantages of the proposed approach. {\textcopyright} 2015 IEEE.

}, keywords = {Big Data, Clouds, Complex ecosystems, Complex infrastructures, Cyber physical systems (CPSs), Design and implementations, Ecology, Ecosystems, embedded systems, Internet, Internet of Things, Sensing and actuating, smart cities, Sustainable development, Sustainable growth, Trusted Computing, Ubiquitous computing, Virtual reality, Virtualizations}, isbn = {9781467372114}, doi = {10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.174}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84983438378\&doi=10.1109\%2fUIC-ATC-ScalCom-CBDCom-IoP.2015.174\&partnerID=40\&md5=790a6042e6e80594e42b64695d6b014e}, author = {Giovanni Merlino and Dario Bruneo and Francesco Longo and Antonio Puliafito and Salvatore Distefano} }