@proceedings {Bruneo2017, title = {Head in a Cloud: An approach for Arduino YUN virtualization}, journal = {GIoTS 2017 - Global Internet of Things Summit, Proceedings}, year = {2017}, note = {cited By 0; Conference of 2017 Global Internet of Things Summit, GIoTS 2017 ; Conference Date: 6 June 2017 Through 9 June 2017; Conference Code:130055}, publisher = {Institute of Electrical and Electronics Engineers Inc.}, address = {Geneva; Switzerland; 6-9 June 2017}, abstract = {

Smart boards are triggering the IoT revolution, allowing to make common objects and things smart through their network, storage and processing capabilities. Arduino boards have a prominent role in this revolution, due to their customizability and programming freedom. From a different perspective, another strategic development for the IoT is towards Cloud, allowing to properly manage things and data ubiquitously, on demand, as services. Pushing in this direction, we can pave the way to the Cloud of Things, where real things, rather than the data they produce, can be provided to third parties, by adopting a {\textquoteright}device-centric{\textquoteright} approach. To this purpose, virtualization of physical resources becomes an essential step and core mechanism. In this paper we focus on smart board virtualization, implementing a flexible solution for Arduino boards based on Stack4Things, allowing to create, multiplex, migrate and deploy virtual boards in IoT-Cloud contexts. The results obtained by a preliminary implementation and experiments on the $\#$SmartME testbed are shown in the paper to demonstrate the feasibility and the effectiveness of the proposed solution. {\textcopyright} 2017 IEEE.

}, keywords = {Arduino YUN, Clouds, Computer operating systems, Core mechanisms, Customizability, Digital storage, GPIO pins, Internet of Things, Physical resources, Processing capability, Stack4Things, Strategic development, Virtual reality, Virtualization}, isbn = {9781509058730}, doi = {10.1109/GIOTS.2017.8016263}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029291785\&doi=10.1109\%2fGIOTS.2017.8016263\&partnerID=40\&md5=4a8eed3e1348ab91166e648151d625c0}, author = {Dario Bruneo and Salvatore Distefano and Francesco Longo and Giovanni Merlino and Antonio Puliafito and Angelo Zaia} } @proceedings {Bruneo2017135, title = {User-space network tunneling under a mobile platform: A case study for android environments}, journal = {ADHOC-NOW 2017: Ad-hoc, Mobile, and Wireless Networks}, year = {2017}, note = {cited By 0; Conference of 16th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW 2017 ; Conference Date: 20 September 2017 Through 22 September 2017; Conference Code:198729}, pages = {135-143}, publisher = {Springer Verlag}, address = {Messina; Italy; 20-22 September 2017}, abstract = {

The IoT ecosystem is taking the whole ICT world by storm and, in particular for currently hot topics such as Smart Cities, it is becoming one of the key enablers for innovative applications and services. When talking about end users, or even citizens, mobiles enter the picture as the ultimate personal gadget, as well as relevant outlets for most of the duties (sensing, networking, edge computing) IoT devices are typically envisioned in the first place. Smartphones, tablets and similar accessories are even more powerful in terms of hardware capabilities (and function diversity) than typical embedded systems for IoT, but it is typically the software platform (e.g., the OS and SDK) which limits choices for the sake of security and control on the user experience. Even a relatively open environment, such as Android, exhibits these limits, in stark contrast to the otherwise very powerful and feature-complete functionalities the underlying system (i.e., Linux) natively supports. In this work the authors describe a fully user-friendly and platform-compliant approach to let users break free from some of these limitations, in particular with regard to network virtualisation, for the purpose of extending an IoT-ready Smart City use case to mobiles. {\textcopyright} Springer International Publishing AG 2017.

}, keywords = {Ad hoc networks, Android (operating system), Clouds, Computer operating systems, Distributed computer systems, embedded systems, Internet of Things, Mobile ad hoc networks, Network virtualisation, network virtualization, Open environment, OpenStack, Reverse tunneling, Smart city, Software platforms, Stack4Things, Underlying systems, Virtual reality, Virtualization, Wireless ad hoc networks}, isbn = {9783319679099}, issn = {03029743}, doi = {10.1007/978-3-319-67910-5_11}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030154981\&doi=10.1007\%2f978-3-319-67910-5_11\&partnerID=40\&md5=e898f7c0ffad87eadbefa74a8a7a8940}, author = {Dario Bruneo and Salvatore Distefano and Kostya Esmukov and Francesco Longo and Giovanni Merlino and Antonio Puliafito} }