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Abstract With the increasing adoption of embedded smart
devices and their involvement in different application fields,
complexity may quickly grow, thus making vertical ad hoc
solutions ineffective. Recently, the Internet of Things (IoT)
and Cloud integration seems to be one of the winning solu-
tions in order to opportunely manage the proliferation of
both data and devices. In this paper, following the idea to
reuse as much tooling as possible, we propose, with regards
to infrastructure management, to adopt a widely used and
competitive framework for Infrastructure-as-a-Service such
as OpenStack. Therefore, we describe approaches and archi-
tectures so far preliminary implemented for enabling Cloud-
mediated interactions with droves of sensor- and actuator-
hosting nodes by presenting Stack4Things, a framework for
Sensing-and-Actuation-as-a-Service (SAaaS). In particular,
starting from a detailed requirement analysis, in this work,
we focus on the subsystems of Stack4Things devoted to
resource control and management as well as on those related
to the management and collection of sensing data. Several
use cases are presented justifying how our proposed frame-
work can be viewed as a concrete step toward the complete
fulfillment of the SAaaS vision.
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1 Introduction

In the last years, the Internet of Things (IoT) has emerged
as one of the hottest trend in ICT thanks to the prolifera-
tion of field-deployed, dispersed, and heterogeneous sensor-
and actuator-hosting platforms. Recently, with the increas-
ing development of powerful and flexible embedded sys-
tems characterized by reprogrammable behavior and ease of
use, such things are gaining a “smart” labeling to indicate
this evolution. This all-encompassing and much ambitious
scenario calls for adequate technologies.

Several solutions are already present in the literature
mainly focusing on lower (communication) layer and in par-
ticular on how to interconnect (among themselves and to the
Internet) any network-enabled thing [1]. However, in order
to realize the Sensing-and-Actuation-as-a-Service (SAaaS)
vision [2], other aspects have to be also taken into account
such as solutions for creating and managing a dynamic
infrastructure of sensing and actuation resources. In fact,
in order to effectively control devices, sensors, and things,
several mechanisms are strongly needed, e.g., manage-
ment, organization, and coordination. Then, a middleware
devoted to management of both sensor- and actuator-hosting
resources may help in the establishment of higher-level
services.

In this direction, the integration between IoT and Cloud
is one of the most effective solutions even if up to now
efforts revolve around managing heterogeneous devices by
resorting to legacy protocols and vertical solutions out of
necessity, and integrating the whole ecosystem by means of
ad-hoc approaches [3]. In our vision, the Cloud may play
a role both as a paradigm, and as one or more ready-made
solutions for a (virtual) infrastructure manager (VIM), to
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be extended to IoT infrastructure. In particular, we propose
to extend a well-known framework for the management
of Cloud computing resources, OpenStack [4], to manage
sensing and actuation ones, by presenting Stack4Things1

an OpenStack-based framework implementing the SAaaS
paradigm. Thanks to such a framework, it is possible to
manage in an easily way fleets of sensor- and actuator-
hosting boards regardless of their geographical position or
their networking configuration.

Preliminary details of the Stack4Things2 architecture
have been presented in [6]. In this paper, starting from
a detailed requirement analysis, we describe the whole
Stack4Things architecture by focusing on both Cloud and
board components. In designing Stack4Things, we followed
a bottom-up approach, consisting of a mixture of rele-
vant technologies, frameworks, and protocols. In addition
to the already cited OpenStack, we take advantage of the
WebSocket [7] technology and we base our communica-
tion framework on the web application messaging protocol
(WAMP) [8].

The rest of the paper is organized as follows: Section 2
features a review of the literature; Section 3 introduces
OpenStack and presents all the technologies exploited
for the implementation of the Stack4Things framework;
Section 4 describes the Stack4Things architecture both from
the point of view of the IoT devices and of the Cloud
infrastructure focusing on the control and management of
sensing and actuation resources and on the collection of
sensing data; Section 5 gives a detailed view of the defined
REST API; Section 6 shows some specific use cases that
have been implemented and tested in the Stack4Things
middleware; and Section 7 closes the paper with some
discussion about the business perspectives around the pro-
posed paradigm, and how the framework can be extended to
include additional features and functionalities.

2 Related work

The convergence of Cloud and IoT, especially in terms of
the Cloud as a support for IoT-based applications, has been
extensively investigated in recent years. For instance, some
authors [9] have surveyed commercial and open source plat-
forms for data gathering and processing platforms for smart
devices, while also proposing an architecture for a platform
of this kind, mostly focused on data interchange formats and
communication layers. In [10], a Cloud platform for fully

1We are developing all our software as Open Source, making it freely
available through the Web [5].
2From now on, Stack4Things is sometimes abbreviated as s4t.

distributed interacting objects is presented, where most of
the issues are tackled in terms of networking capabilities
and dissemination of system-wide metadata by means of
distributed hash tables. An overview of principles for how
to engineer an IoT/Cloud integration is exposed in [11],
hinting at so-called “software-defined machines” as col-
lections of IoT resources and Cloud-provided ones, a way
to spread execution of the (IoT) application stack across
IoT devices and Clouds, albeit still looking at IoT applica-
tions as hierarchies of engines for analytics, at increasingly
smaller scales as processing gets pushed to the edge. There
is also a popular line of research in the community which
looks at the integration of IoT and Cloud as a way to estab-
lish Cyber-Physical Cloud Computing Systems [12], thus
exploring virtual sensing in order to compose and orches-
trate sensor-based services, in the end devising a hierarchy
of control. What characterises our approach in comparison
with the aforementioned efforts is a lack of any prede-
fined, possibly rigid, scheme with regards to how to mix
and match resources to empower the IoT application, thus
leading to higher degrees of freedom in how to engineer
any vertical of interest. This advantage stems naturally from
the Infrastructure-as-a-Service approach to IoT devices as
sensor- and actuator-hosting nodes, while also including fur-
ther stakeholders and actors with respect to plain IaaS, e.g.,
third-parties as contributors in addition to owners alone.
In this sense, leveraging an industrial-strength open source
IaaS platform brings benefits and functionalities of its own,
e.g., a service-oriented role-based model for authentication
and delegation, built-in to the preexisting codebase, com-
pared to ad-hoc solutions, further stressing the horizontal
nature of the paradigm and design. Moreover, integrating
IoT management and resource provisioning in OpenStack
has not been independently explored by the development
community in terms of prototypes or even blueprints yet.
Still clinging to the approach, there is also scope for unique
design choices, such as Websocket-based communication
and messaging which, to the best of our knowledge, has
not been investigated nor applied in the research domain of
IoT/Cloud integration.

3 Background

All these efforts are manly focused on a data-centric per-
spective, mainly aiming at managing (IoT sensed) data by
the Cloud. In [2], a different approach is adopted, where
the goal is to provide actual sensing and actuation resources
that could be handled by their (Cloud) users, as computing
and storage resources in IaaS or DaaS Clouds, i.e., virtu-
alized and multiplexed over (scarce) hardware resources.
In other words, the proposed approach aims at adopting
the service-oriented/Cloud paradigm in the management
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sensing resources and things instead of considering the
Cloud as just a complementary technology, adopting a
device-centric perspective [13] toward the SAaaS and the
Things as a Service (TaaS) [14] paradigm.

The scenario thus enabled is depicted, from a high level
point of view, in Fig. 1. Four main actors are identified:
(i) the contributors, voluntarily providing their sensing and
actuation resources hosted in their nodes, i.e., boards or
devices, to (ii) the SAaaS provider, building up and main-
taining the infrastructure, the platform, and the services
for gathering, configuring, and providing these resources as
services to (iii) app developers/providers, deploying their
applications on the sensing and actuation nodes, finally used
by (iv) end-users.

In designing our solution for implementing this SAaaS
vision, we based our efforts on Open Source technologies
and standards. The latest Arduino YUN [15]-like boards
represent our reference for the IoT nodes. Such a kind
of devices is usually equipped with (low power) micro-
controller (MCU) and micro-processor (MPU) units. They
can interact with the physical world through a set of dig-
ital/analog I/O pins while connection to the Internet is
assured by Ethernet and Wifi network interfaces. A Linux
distribution (usually derived from the OpenWRT project)
can run on the MPU. Recently, the use of BaTHOS [16] on
the MCU side has spread, thus enabling the digital/analog
I/O pins to be directly accessed from the MPU.

With respect to network connectivity, presence, and
reachability, WebSocket [7] is the leading technology. Web-
Socket is a standard HTTP-based protocol providing a
full-duplex TCP communication channel over a single
HTTP-based persistent connection. WebSocket allows the
HTTP server to send content to the browser without
being solicited: messages can be passed back and forth
while keeping the connection open creating a two-way (bi-
directional) ongoing conversation between a browser and
the server. One of the main advantages of WebSocket is
that communications are performed over TCP port number
80. This is of benefit for those environments which block
non-Web Internet connections using a firewall. For this rea-
son, several application-level protocols started to rely on
this web-based transport protocol for communication—see
for example the use of eXtensible Messaging and Presence
Protocol (XMPP) over WebSocket—also in the IoT field.

Web application messaging protocol (WAMP) [8] is
a sub-protocol of WebSocket, specifying a communica-
tion semantic for messages sent over WebSocket. Dif-
ferently from other application-level messaging protocols,
e.g., XMPP, advanced message queuing protocol (AMQP),
ZeroMQ, WAMP is natively based on WebSocket and pro-
vides both publish/subscribe (pub/sub) and (routed) remote
procedure call (RPC) mechanisms. In WAMP, a router is
responsible of brokering pub/sub messages and routing
remote calls, together with results/errors.

Fig. 1 SAaaS scenario
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3.1 OpenStack

As already mentioned, with respect to the virtual infrastruc-
ture manager, OpenStack [4] is the technology of reference.
OpenStack is a centerpiece of infrastructure Cloud solutions
for most commercial, in-house, and hybrid deployments, as
well as a fully Open Source ecosystem of tools and frame-
works. Currently, OpenStack allows to manage virtualized
computing/storage resources, according to the infrastruc-
ture Cloud paradigm. In Fig. 2, a conceptual architecture
of OpenStack depicting components, as boxes, and the
services they provide to other components, with arrows,

are shown, respectively. Nova, the compute resource man-
agement subsystem, lies at the core of OpenStack and
provisions VMs, with the help of a number of subsys-
tems that provide core (e.g., networking in the case of
Neutron) and optional services (e.g., block storage, in the
case of Cinder) to the instances. Horizon is the dashboard
and as such provides either a (web-based) UI or even a
command-line interface to Cloud end users. Ceilometer, the
metering and billing subsystem, like most other compo-
nents of the middleware, cannot be fully analyzed on its
own, as it needs to interface to, and support, Nova. In par-
ticular, while both Nova and any of the aforementioned

Fig. 2 OpenStack: conceptual architecture
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Fig. 3 Stack4Things core
subsystems: conceptual
architecture

subsystems exploit a common bus, the former alone dictates
a hierarchy on participating devices, including their role and
policies for interaction. Indeed, Nova requires a machine
operating as Cloud controller, i.e., centrally managing one
or more Compute nodes, which are typically expected to
provide component-specific services (e.g., computing) by
employing a resource-sharing/workload-multiplexing facil-
ity, such as an hypervisor. Our main goal in this paper is
to propose an extension of OpenStack for the management
and service-oriented exploitation of sensing and actuation
resources.

Thus, shifting our analysis to the Cloud-side subsys-
tem, the OpenStack component for metering (and billing)
is Ceilometer, while Horizon is the dashboard, hence we
turned first our attention on these frameworks in order to
tackle data acquisition and visualization duties, for samples
coming from the “things.”

Highlighting this focus, as can be seen in Fig. 3, the
same kind of conceptual architecture as in Fig. 2 gets sim-
plified in order to take into account just core components
for our approach, in particular introducing a novel subsys-
tem, IoTronic, devoted to the provisioning of configuration

and tasks for board-hosted sensing and actuation resources.
Indeed, in place of a VM, in this case, we have a diamond-
shaped box symbolizing a (transducer-hosting) board, and
corresponding interactions are described as text in italic
along the arrows.

With regard to Ceilometer, while metering is a feature
needed for billing purposes, with monitoring as its enabling
pattern, itself a core duty for any Cloud solution, in our
case we partly reverse the perspective, as we are mostly
interested in measurements for their own sake, collecting
samples in order to monitor vital physical world parameters.

4 Stack4Things architecture

Figure 4 shows the Stack4Things overall architecture,
focusing on communication between end users and sensor-
and actuator-hosting nodes. We assume each of such nodes
is an Arduino YUN-like smart board. On the board side, the
Stack4Things lightning-rod runs on the MPU and interacts
with the OS tools and services of the board, and with sens-
ing and actuation resources through I/O pins. It represents

Fig. 4 Stack4Things overall
architecture in the case of
Arduino YUN-like boards
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Fig. 5 Stack4Things board-side architecture

the point of contact with the Cloud infrastructure allowing
end users to manage board resources even if they are behind
a NAT or a strict firewall. This is ensured by a WAMP-
based communication between the Stack4Things lightning-
rod and its Cloud counterpart, namely the Stack4Things
IoTronic service. The Stack4Things IoTronic service is
implemented as an OpenStack service providing end users
with the possibility to manage one or more smart boards,
remotely. This can happen both via a command-line based
client, namely Stack4Things command line client, and a
Web browser though a set of REST APIs provided by the
Stack4Things IoTronic service.

4.1 Board-side

Figure 5 shows the Stack4Things architecture with more
focus on the board side. We assume that BaTHOS runs
on the board MCU while a Linux OpenWRT-like distri-
bution runs on the MPU. BaTHOS is equipped with a set
of extensions (from now on indicated as MCUIO exten-
sions) that expose the board digital/analog I/O pins to the
Linux kernel. The communication is carried out over a serial
bus. The Linux kernel running on the MPU is compiled
with built-in host-sideMCUIO modules. In particular, func-
tionalities provided by the MCUIO kernel modules include
enumeration of the pins and exporting corresponding han-
dlers for I/O in the form of i-nodes of the Linux sysfs
virtual filesystem. Upward the sysfs abstraction, which is
compliant with common assumptions on UNIX-like filesys-
tems, there is the need to mediate access by means of
a set of MCUIO-inspired libraries, namely Stack4Things
MCUIO sysfs libraries. Such libraries represent the inter-
face with respect to the MCUIO sysfs filesystem dealing
with read and write requests in terms of concurrency. This

is done at the right level of semantic abstraction, i.e., lock-
ing and releasing resources according to bookings and in
a way that is dependent upon requirements deriving from
the typical behavior of general purpose I/O pins and other
requirements that are specific to the sensing and actuating
resources.

The Stack4Things lightning-rod engine represents the
core of the board-side software architecture. The engine
interacts with the Cloud by connecting to a specific WAMP
router (see also Fig. 6) through a WebSocket full-duplex
channel, sending and receiving data to/from the Cloud
and executing commands provided by the users via the
Cloud. Such commands can be related to the communica-
tion with the board digital/analog I/O pins and thus with
the connected sensing and actuation resources (through
the Stack4Things MCUIO sysfs library) and to the inter-
actions with OS tools and/or resources (e.g., filesystem,
services and daemons, package manager). The commu-
nication with the Cloud is assured by a set of libraries
implementing the client-side functionalities of the WAMP
protocol (Stack4Things WAMP libraries). Moreover, a set
of WebSocket libraries (Stack4Things wstunnel libraries)
allows the engine to act as a WebSocket reverse tunneling
server, connecting to a specific WebSocket server running
in the Cloud. This allows internal services to be directly
accessed by external users through the WebSocket tunnel
whose incoming traffic is automatically forwarded to the
internal daemon (e.g., SSH, HTTP, Telnet) under considera-
tion. Outgoing traffic is redirected to the WebSocket tunnel
and eventually reaches the end user that connects to the
WebSocket server running in the Cloud in order to interact
with the board service.

The Stack4Things lightning-rod engine also implements
a plugin loader. Custom plugins can be injected from the
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Fig. 6 Stack4Things Cloud-side architecture

Cloud and run on top of the plugin loader in order to imple-
ment specific user-defined commands, possibly including
system-level interactions, e.g., with a package manager or
the runlevels management subsystem.

In this sense, the authors may resort, in future efforts,
to previous work [17] of their own related to runtime
customization for further enhancements to the architecture.

New REST resources are automatically created expos-
ing the user-defined commands on the Cloud side. As soon
as such resources are invoked, the corresponding code is
executed on top of the smart board.

4.2 Cloud-side—control and actuation

The Stack4Things Cloud-side architecture (see Fig. 6) con-
sists of an OpenStack service we called IoTronic. The
main goals of IoTronic lie in extending the OpenStack
architecture toward the management of sensing and actua-
tion resources, i.e., to be an implementation of the SAaaS
paradigm. IoTronic is characterized by the standard archi-
tecture of an OpenStack service. The Stack4Things IoTronic
conductor represents the core of the service, managing the
Stack4Things IoTronic database that stores all the necessary
information, e.g., board-unique identifiers, association with
users and tenants, board properties and hardware/software
characteristics, as well as dispatching remote procedure

calls among other components. The Stack4Things IoTronic
APIs expose a REST interface for the end users that
may interact with the service both via a custom client
(Stack4Things IoTronic command line client) and via a Web
browser. In fact, the OpenStack Horizon dashboard has
been enhanced with a Stack4Things dashboard exposing all
the functionalities provided by the Stack4Things IoTronic
service and other software components. In particular, the
dashboard also deals with the access to board-internal ser-
vices, redirecting the user to the Stack4Things IoTronic WS
tunnel agent. This piece of software is a wrapper and a con-
troller for theWebSocket server to which the boards connect
through the use of Stack4Things wstunnel libraries.

Similarly, the Stack4Things IoTronic WAMP agent con-
trols the WAMP router and acts as a bridge between other
components and the boards. It translates advanced message
queuing protocol (AMQP) messages into WAMP messages
and vice-versa. AMQP is an open standard application layer
protocol for message-oriented middleware, a bus featuring
message orientation, queueing, routing (including point-
to-point and publish-subscribe), reliability, and security.
Following the standard OpenStack philosophy, all the com-
munication among the IoTronic components is performed
over the network via an AMQP queue. This allows the
whole architecture to be as scalable as possible given that
all the components can be deployed on different machines



60 Ann. Telecommun. (2017) 72:53–70

without affecting the service functionalities, as well as the
fact that more than one Stack4Things IoTronic WS tunnel
agent and more than one Stack4Things IoTronic WAMP
agent can be instantiated, each of them dealing with a
sub-set of the IoT devices. In this way, redundancy and
high availability are also guaranteed. As already mentioned
in Section 3, a prominent reason for choosing WAMP as
the protocol for node-related interactions, apart from pos-
sibly leaner implementations and smoother porting, lies in
WAMP being a WebSocket subprotocol and supporting two
application messaging patterns, Publish & Subscribe and
Remote Procedure Calls, the latter being not available in
AMQP.

4.3 Cloud-side—sensing data collection

The OpenStack service that collects monitoring data and
events from the infrastructure (mainly for billing and elas-
ticity purposes) is Ceilometer. We built on top of it in order
to allow collection of metrics coming from the smart boards.
In particular, we provide a Stack4Things Ceilometer agent
to which smart boards that need to send metrics can con-
nect. Such an agent translates the WAMPmessages received
by the boards to AMQP messages in the form of OpenStack
notifications. Such notifications are then translated by the
Ceilometer framework in samples that are collected by the
Ceilometer collector and then stored in a non-SQL database
(usually MongoDB). Metrics and events can be accessed
through the Ceilometer APIs. The Stack4Things dashboard
and the Stack4Things command line client are also able to
interact with such APIs in order to obtain/visualize real-
time and historical data. The Stack4Things framework also
provides complex event processor (CEP) functionalities
through the Stack4Things CEP engine. This engine can be
programmed in order to detect specific situations of inter-
est that can then be signaled to the Stack4Things IoTronic
conductor which, in turn, can send commands to the smart
boards in order to react to the situation by actuating actions
or changing their behavior.

A prototype of the architecture so far described has been
implemented and source code is freely available through the
Web [5].

5 Stack4Things REST API

Table 1 reports an extract of the Stack4Things IoTronic
RESTful API with exploited HTTP methods, URLs, seman-
tics, input parameters, and return types. We focus on API
methods that relate to nodes, corresponding pins, services
that can be accessed on the nodes, jobs that can be sched-
uled to send sensor readings to the Cloud, and injection of
CEP statements with specific reactions.

API calls listed under the Nodes section provide a list of
the nodes currently registered to the Cloud (NodeCollection
JSON data type provided in the body of the response) and,
if necessary, detailed information about each node (Node
JSON data type). An example of NodeCollection JSON
response is the following:

while the following is an example of Node JSON response:

API calls listed under the Pins section provide the inter-
face to access pins on nodes. In particular, it is possible to
retrieve a node layout in terms of pins and their modes and
it is possible to set/unset modes on a pin. Finally, it is pos-
sible to set/read a value from a pin. The RESTful interface
hides the complexity.

6 Use cases

In this section, we propose some specific use cases that
have been implemented and tested in the Stack4Things
middleware, highlighting the interactions between the lat-
ter and application developers/providers as main con-
sumers of the Stack4Things services. We therefore do not
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investigate on application level use cases since the interac-
tion of end users with such services strongly depends on the
application logic, falling out of the scope of our work on
the Stack4Things-app developers and providers interface.
We therefore show how the architecture components interact
among themselves to fulfill the specific goals. Each use case
corresponds to a specific call in the Stack4Things REST
APIs from potential app developers and providers.

6.1 Use case: provide the list of nodes registered
to the cloud

This use case is the basic one, consisting in a listing of all
the nodes currently registered to the Cloud. It corresponds
to call #1 in Table 1. The listing is useful to retrieve the
unique identifiers of the different nodes that can later be
used to directly interact which each of them. As a use case

6

Fig. 7 Provisioning of the list of nodes registered to the cloud



Ann. Telecommun. (2017) 72:53–70 63

prerequisite, we assume that one or more nodes are already
registered to the Cloud. The following operations are then
performed (see Fig. 7).

1. The user asks for the list of the nodes registered to
the Cloud through the s4t dashboard (or alternatively
through the s4t command line client).

2. The s4t dashboard performs one of the available s4t
IoTronic APIs calls via REST (specifically, call #1).
The call pushes a new message into a specific AMQP
IoTronic queue.

3. The s4t IoTronic conductor pulls the message from
the AMQP IoTronic queue and it performs a query to
the s4t IoTronic database retrieving the list of nodes
registered to the Cloud.

4. The s4t IoTronic conductor pushes a new message into
a specific AMQP IoTronic queue.

5. The s4t IoTronic APIs call pulls the message from the
AMQP IoTronic queue and replies to the s4t dashboard.

6. The s4t dashboard provides the user with the list of
boards registered to the Cloud.

In this use case, no interaction with any board is nec-
essary given that all the information is stored on the s4t
IoTronic database. However, if desired, the connectivity sta-
tus of the boards that are currently registered to the Cloud
can be retrieved from the WAMP router using the presence
mechanisms that it provides natively. In particular, such an
information can be collected on demand or periodically. In
the first case, when the call for retrieving the list of nodes
is issued, after querying the s4t IoTronic database, the s4t
IoTronic conductor can contact the s4t IoTronic WAMP
agents to which the boards are registered obtaining news
about their connectivity status. In the second case, the s4t
IoTronic WAMP agents can periodically store such an infor-
mation on the s4t IoTronic database in a proactive way
so that the s4t IoTronic conductor is able to find it when
necessary. Of course, a tread-off between freshness of the
information (first case) and performance of the call (second
case) arises.

6.2 Use case: retrieve the current value of a pin
on a specific board

This use case is slightly more complex than the first one
as it requires an interaction with a specific board. It corre-
sponds to call #7 in Table 1. As a use case prerequisite, we
assume that one or more nodes are already registered to the
Cloud and that the user knows both the unique identifier
of the desired board (maybe retrieved by issuing call #1 in
Table 1) and the name of the pin from which he/she wants
to read the current value (maybe retrieved by issuing call
#3 in Table 1 to get the list of pins of a specific node). The
following operations are then performed (see Fig. 8).

1. The user asks for the current value of a pin on a spe-
cific board through the s4t dashboard (or alternatively
through the s4t command line client).

2. The s4t dashboard performs one of the available s4t
IoTronic APIs calls via REST (specifically, call #7).
The call pushes a new message into a specific AMQP
IoTronic queue.

3. The s4t IoTronic conductor pulls the message from
the AMQP IoTronic queue and it performs a query
to the s4t IoTronic database. In particular, it checks
if the board is already registered to the Cloud and if
the required pin actually exists. Finally, it queries for
the s4t IoTronic WAMP agent to which the board is
registered.

4. The s4t IoTronic conductor pushes a new message into
a specific AMQP IoTronic queue.

5. The s4t IoTronic WAMP agent to which the board
is registered pulls the message from the queue and
publishes a new message into a specific topic on the
corresponding WAMP router.

6. Through the s4t WAMP lib, the s4t lightning-rod
engine receives the message by the WAMP router.

7. The s4t lightning-rod engine uses the s4t mcuio sysfs
lib to read the value of the specified pin and through
the s4t WAMP lib replies to the s4t IoTronic WAMP
agent by writing a message into a specific topic on the
corresponding WAMP router.

8. The s4t IoTronic WAMP agent receives the message
from the WAMP router and publishes a new message
into a specific AMQP IoTronic queue with the value
that has been read from the pin on the specified board.

9. The s4t IoTronic APIs call pulls the message from
the AMQP IoTronic queue and replies to the s4t
dashboard.

10. The s4t dashboard provides the user with the value
that has been read from the pin on the specified
board.

As already mentioned, scalability in this kind of use
cases is assured by instantiating more than one s4t IoTronic
WAMP agent so that each one of them can deal with a subset
of the boards connected to the Cloud infrastructure.

6.3 Use case: create an SSH connection toward a node

This use case is a common one in classical Cloud scenarios,
i.e., SSH access into a virtualized resource. In our case, we
consider the creation of an SSH connection toward a node
through the help of the Cloud management system. The use
case corresponds to call #10 in Table 1 that the user has to
issue specifying the standard SSH port, i.e., port number 22.
Given the assumption that nodes are behind a firewall/NAT,
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Fig. 8 Retrieving the current value of a pin on a specific board

a more complex interaction flow is needed in order to ful-
fill the goal with respect to a standard Cloud scenario in
which compute nodes hosting virtual machines and fron-
tend nodes through which the connection is guaranteed are
usually within the same local area network. In fact, in order
for a connection to be created with a service hosted on a
board, a board-initiated tunnel needs to be created to the
Cloud. As a use case prerequisite, we assume the node of

interest is already registered to the Cloud and the SSH dae-
mon is already listening on its standard port.3 The following
operations are then performed (see Fig. 9).

3Note that start/stop/restart commands for standard services running
on the boards registered to the Cloud have been implemented through
the RPC functionalities provided by the WAMP mechanisms but we
do note report the corresponding execution flows for a matter of space.
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Fig. 9 Creation of an SSH connection toward a node

1. The user asks for a connection to the SSH daemon run-
ning on a specific board through the s4t dashboard (or
alternatively through the s4t command line client).

2. The s4t dashboard performs one of the available s4t
IoTronic APIs calls via REST. The call pushes a new
message into a specific AMQP IoTronic queue.

3. The s4t IoTronic conductor pulls the message from the
AMQP IoTronic queue and it performs a query to the
s4t IoTronic database. In particular, it checks if the

board is already registered to the Cloud and queries
for the s4t IoTronic WAMP agent to which the board
is registered. Finally, it decides the s4t IoTronic WS
tunnel agent to which the user can be redirected and
randomly generates a free TCP port.

4. The s4t IoTronic conductor pushes a new message into
a specific AMQP IoTronic queue.

5. The s4t IoTronic WAMP agent to which the board
is registered pulls the message from the queue and
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publishes a new message into a specific topic on the
corresponding WAMP router.

6. Through the s4t WAMP lib, the s4t lightning-rod
engine receives the message by the WAMP router.

7. The s4t lightning-rod engine opens a reverse Web-
Socket tunnel to the s4t IoTronic WS tunnel agent
specified by the s4t IoTronic conductor also provid-
ing the TCP port through the s4t wstunnel lib. It also
opens a TCP connection to the internal SSH daemon
and pipes the socket to the tunnel.

8. The s4t IoTronic WS tunnel agent opens a TCP server
on the specified port. Then, it publishes a newmessage
into a specific AMQP IoTronic queue confirming that
the operation has been correctly executed.

9. The s4t IoTronic APIs call pulls the message from
the AMQP IoTronic queue and replies to the s4t
dashboard.

10. The s4t dashboard provides the user with the IP
address and TCP port that he/she can use to connect to
reach the SSH service on the board.

11. The user connects to the specified IP address and TCP
port via an SSH client and the connection is tunneled
to the board.

6.4 Use case: store readings from a sensor in the cloud

This use case envisions the use of the Cloud infrastructure
not only for the management and control of the nodes but
also as a storage platform for sensing data. In fact, the read-
ings coming from a specific sensor attached to a specific
board can be stored in the Ceilometer database and could be
potentially used to take decisions and react to specific sit-
uations (see the next use case). The use case corresponds
to call #14 in Table 1. Other storage systems could be used
different from the Ceilometer one. For example, we also
implemented mechanisms for the storing of sensing data in
external MongoDB databases and or Open Data-compliant
CKAN-enabled storages such as the one provided by the FI-
WARE infrastructure [19]. As a use case prerequisite, we
suppose a sensor is attached to a specific pin of a specific
board. We also suppose the board is already registered to the
Cloud (Fig. 10).

1. The user asks for the readings from a sensor attached
to a specific pin of a specific board to be stored in the
Cloud with a specific sampling time4 through the s4t

4Other mechanisms have been implemented in which the sending of
the sensor readings is triggered by a change or by the overpassing of
a specified threshold but we do not report them here for a matter of
space.

dashboard (or alternatively through the s4t command
line client).

2. The s4t dashboard performs one of the available s4t
IoTronic APIs calls via REST. The call pushes a new
message into a specific AMQP IoTronic queue.

3. The s4t IoTronic conductor pulls the message from the
AMQP IoTronic queue and it performs a query to the
s4t IoTronic database. In particular, it checks if the
board is already registered to the Cloud and queries for
the s4t IoTronic WAMP agent to which the board is reg-
istered. Finally, it decides the s4t ceilometer agent to
which the readings from the sensor should be sent.

4. The s4t IoTronic conductor pushes a new message into
a specific AMQP IoTronic queue.

5. The s4t IoTronic WAMP agent to which the board
is registered pulls the message from the queue and
pushes a new message into a specific topic on the
corresponding WAMP router.

6. Through the s4t WAMP lib, the s4t lightning-rod engine
receives the message by the WAMP router.

7. The s4t lightning-rod engine connects to the WAMP
router of the specified s4t ceilometer agent through the
s4t WAMP lib. Then, the s4t lightning-rod engine peri-
odically reads from the specified pin through the s4t
mcuio sysfs lib and pushes a message into a specific
topic on the WAMP router.

8. The s4t ceilometer agent pulls each message from the
WAMP router and pushes a corresponding message into
the Ceilometer AMQP queue.

9. The Ceilometer collector collects the messages from the
Ceilometer AMQP queue and stores the contained met-
rics into the Ceilometer non-SQL database. It also sends
them to the s4t CEP engine via REST for further semi
real-time analysis.

Besides periodic sampling of the readings of a sensor,
the user is also allowed to program the system to send sam-
ples when specific situations are detected, e.g., a threshold
is passed, a positive/negative change in the value occurs.
Mixed data dispatching modes are also available, e.g.,
allowing users to program the system to send samples
periodically and each time a threshold is passed.

6.5 Use case: inject a CEP rule and set a reaction

This use case shows how real-time analysis capabilities can
be injected in the Cloud to react to specific situation of
interest. In fact, the readings coming from all the sensors
attached to the boards registered to the Cloud that have been
configured to be stored in the Ceilometer database can be
also redirected to the CEP engine that can be programmed
to detect user-specified data patterns. The user can spec-
ify both the pattern of interest (in the form of a ESPER
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Fig. 10 Storing readings from a sensor in the cloud

statement) and the reaction that he/she desires the system to
have as soon as a detection is performed. We designed the
system so that reactions can be in the form of REST calls
to the IoTronic interface so that, e.g., actuation commands
can be send to the pins of specific boards, the configuration
of the system can be changed injecting CEP rules, and so
on. The use case corresponds to call #17 in Table 1. As a
use case prerequisite, we suppose that a set of metrics have
already be programmed so that they are sent to the Cloud
(Fig. 11).

1. The user asks a CEP rule to be injected in the system
together with a corresponding reaction through the s4t
dashboard (or alternatively through the s4t command
line client).

2. The s4t dashboard performs one of the available s4t
IoTronic APIs calls via REST. The call pushes a new
message into a specific AMQP IoTronic queue.

3. The s4t IoTronic conductor pulls the message from
the AMQP IoTronic queue and it stores in the s4t
IoTronic database the reaction that it founds in the
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Fig. 11 Inject of a CEP rule and the corresponding reaction

message so that it will be able to retrieve it if the
s4t CEP engine signals that the situation of interest
occurs.

4. The s4t IoTronic conductor pushes a new message into
a specific AMQP IoTronic queue.

5. The s4t CEP engine pulls the message from the queue
and dynamically load the CEP rule so that it can be
continuously checked.

6. If a CEP rule is triggered the s4t CEP engine pushes a
new message into a specific AMQP IoTronic queue.

7. The s4t IoTronic conductor pulls the message from the
queue and it queries the database for the reaction that
has been associated to that rule.

8. The s4t IoTronic conductor issues the call specified
in the reaction to the s4t IoTronic API actuating the
reaction.
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7 Discussion and conclusions

In this paper, we proposed Stack4Things: an implementa-
tion of the SAaaS vision through the OpenStack framework.
We described the considered scenario highlighting actors
and entities as well as identifying the main requirements.
The Stack4Things architecture has been illustrated also dis-
cussing enabling technologies and potential use cases for
application developers and providers.

This effort can be framed into the IoT scenario as a new
way of exploiting this paradigm toward an utility approach.
In the new global environment indeed, the ability to deliver
sustainable high-value services is becoming ever more crit-
ical to increase competitiveness. This process is currently
challenged by two significant trends. On the one hand, ven-
dors have demonstrated strong competence in developing
IoT and especially Cloud technologies and services (e.g.,
Google and Amazon), which are gaining an increasingly
stronger acceptance in the global marketplace. On the other
hand, the globalization of skills has enabled companies in
emerging economies to develop advanced ICT capabilities
as well, leveraging low-cost centers of software compe-
tence. Despite the work done so far, there is still a great
need to focus on tackling the many challenges related to
IoT, sensors, and objects involvement in the next gener-
ation software systems. However, IoT is actually about a
new ecosystem that cuts across vertical areas. New busi-
ness models will require the creation of an IoT ecosystem
that benefits from open platforms such as Stack4Things
and interoperability and the other advanced features they
provide.

From a business perspective, several potential bene-
fits from the Stack4Things adoption could be envisioned.
Among them, one of the most interesting is to establish an
open IoT/sensing resource market. Through Stack4Things,
anyone can sell or buy sensing, actuation, and smart object
resources, from the single resource owners and the sen-
sor network owners up to and including IaaS providers.
Environmental-related services may be easily developed
and new generation of applications strongly interacting with
the surrounding environment may spring up as a result. A
service developer can look for either physical or virtual
resources of third parties in case it is not able to satisfy
the incoming requests; otherwise, it can sell its resources
to a Stack4Things-powered provider, or even give them
for free. This establishes a new idea of pervasive service
provisioning as well as new business models with sev-
eral cooperating actors (e.g., infrastructure providers, sensor
network owners, volunteer end-users, resource brokers).
Increasing the SME competitiveness. A large part of the
improvement will originate from newly opened avenues for
small and medium businesses to join the service economy.

Previously, the setup and deployment of complex commer-
cial services had been largely outside the reach of SMEs and
individual entrepreneurs due to skill, cost, and complexity
considerations. The Stack4Things framework fits for power-
ing cash-strapped startups in launching (and iterating over)
innovative web-oriented services, like oft-cited geolocation-
related ones, in next to no time, reducing the entry barriers to
the service economy and enabling SMEs to offer new com-
petitive services to their customers. Moreover, advanced
revenue models may be inspired by the volunteer-enabled
SAaaS approach, leading toward a dynamic market for
smart objects.

With the Stack4Things capabilities added to the base
repertoire of Web services, it is easy to envision configura-
tions where commercial enterprises plan IoT-based infras-
tructure sized for their average demands, and outsource
excess capacity requirements to service providers, i.e.,
Cloudbursting, thus offering risk mitigation for unforeseen
spikes in demand. The new capabilities of Stack4Things
will pave the way for new business models for ICT ser-
vice providers—who would support the rising wave of both
SME service providers and enterprises requiring occasional
support for their ICT needs.

Furthermore, the Stack4Things technology enables
seamless interoperability among physical (hardware)
resources, virtualized resources, and IoT items by means of
customization, deployment, and, as a consequence, com-
munication bridging facilities. We expect Stack4Things to
greatly improve the ability of Cloud-based applications to
take advantage of IoT-originated data, thus offering new
business opportunities to IoT-powered service providers.
Considering that the number of intelligent, communicating
devices on the network will outnumber “traditional com-
puting” devices by almost two to one by 2016, these new
IoT-related economic opportunities will be potentially of
very high impact.

Lastly, we believe that our work will contribute to the
adoption and widespread diffusion of new software design
methodologies, eased by tailored APIs and customization
features, paving the way toward the proliferation of ser-
vices as a fundamental workflow element of all business
and government activities such as telecommunication sys-
tems, energy and other utility industries, healthcare, travel,
entertainment, and more. As a growing number of functions
will be delivered through services, the software industry
will advance into an era of “Everything as a Service”
approaches.

Future work on Stack4Things will be therefore devoted
to improve the technologies to make real this outlook, by
extending and integrating other OpenStack services (e.g.,
Neutron) with SAaaS functionalities thus enabling more
interesting use cases such as the porting of legacy IoT
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solutions that rely on a single broadcast domain such as
AllJoyn [18].5 Finally, authentication, authorization, and
tenant management could be provided by integrating the
IoTronic service with the OpenStack Keystone service
enabling the implementation of ad hoc security mechanisms
for the control communication and data exchange among the
Cloud infrastructure and the sensor- and actuator-hosting
nodes.
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