
Secure Storage as a Service in Multi-Cloud
Environment

Riccardo Di Pietro1(B), Marco Scarpa2, Maurizio Giacobbe2,
and Antonio Puliafito2

1 Department of Mathematics and Computer Science, University of Catania,
Viale Andrea Doria, 6, 95125 Catania, CT, Italy

rdipietro@unict.it
2 Department of Engineering, University of Messina, Contrada Di Dio,

98158 Sant’Agata, Messina, ME, Italy
{mscarpa,mgiacobbe,apuliafito}@unime.it

Abstract. Nowadays, Cloud computing is rapidly evolving due to social
and cultural influences that are changing our everyday life. Innovative
research in security-enabling techniques and architectures bodes to sat-
isfy the increased interoperability among different vendors. An increasing
number of service providers use Cloud computing to adapt their products
to customer needs by addressing storage requirements in a secure way.
The goal of our proposal is to provide a secure storage service able to store
data in Multi-Cloud environment. The proposed secure storage architec-
ture is oriented to guarantee confidentiality and integrity issues concern-
ing information and data which are disseminated and stored in worldwide
distributed Cloud environments. In this work, the SSME architecture is
presented and discussed. Moreover, in order to evaluate our proposal, we
conducted several experiments by considering the implementation of the
SSME application as a Service in a real scenario.

Keywords: Cloud storage · Multi-Cloud · Confidentiality · Integrity ·
Security · AES-256 · RSA · OpenStack

1 Introduction

The growing number of requests to store and share files in Cloud environments
results in an also growing number of user-friendly Cloud services in order to
satisfy the above requests.

Cloud storage allows to store data in multiple remote sites usually owned by
“top” companies and running their owner solutions, e.g., Google Drive, Drop-
box, Amazon Simple Cloud Storage Service (S3). Besides the above-mentioned
proprietary solutions, other open source solutions exist for providing Cloud stor-
age services. For example, users can use the Swift OpenStack Object Storage to
store lots of data efficiently and cheaply.

The development of the Cloud storage services marketplace particularly
depends on the ability to build economies of scale. Within the Digital Single
c© Springer International Publishing AG 2017
A. Puliafito et al. (Eds.): ADHOC-NOW 2017, LNCS 10517, pp. 328–341, 2017.
DOI: 10.1007/978-3-319-67910-5 27

mscarpa@unime.it



Secure Storage as a Service in Multi-Cloud Environment 329

Market Strategy, the European Union establishes a free flow of data in Europe,
by facilitating data portability and switching of Cloud service providers. The
study “SMART 2013/0043 - Uptake of Cloud in Europe” [4] indicates that
Cloud developments could lead to the growth of the European Cloud market
from e9.5bn in 2013 to e44.8bn by 2020 (i.e., almost five times the market size
in 2013). Approximately the 19% of EU enterprises used Cloud computing in
2014, mostly did it for hosting their e-mail systems and storing files in electronic
form. Moreover, further estimates of this study highlight that four out of ten
companies (39%) using the Cloud reported the risk of a security breach was the
main limiting factor in the use of Cloud computing services.

In such a scenario, by moving data to the Cloud, users can avoid (i) costs
(i.e., money) to build and maintain a private storage infrastructure, (ii) unautho-
rized access by third parties, and at the same time it is important (iii) to reduce
legal uncertainly. In fact, in view of easy file storage and sharing services widely
accessible by several typologies of customers and contexts (e.g., businesses, acad-
emies, and many others), more and more personal and confidential data can be
exposed to privacy and security vulnerabilities.

In this paper we present the Secure Storage in Multi-Cloud Environment
(SSME) architecture which addresses the confidentiality and integrity issues
concerning data store and dissemination in worldwide distributed Cloud environ-
ments. The architecture implements a novel solution which mainly uses encryp-
tion at client-side, and a worldwide distributed middleware for data splitting,
dissemination and retrieval.

The reminder of this paper is organized as follow: in Sect. 3 we give a brief
overview of existing work about the use of multi-Cloud storage using crypto-
graphic data splitting. In Sect. 2, we describe the motivation about the solution
we propose. The proposed architecture is described in Sect. 4, and a detailed
explanation of the implementation is in Sect. 5. In Sect. 6, we describe the results
of the performance analysis. Section 7 concludes the presented work, with a dis-
cussion of some improvements planned as future work.

2 Motivations

Cloud Computing Services usually provide resource management’s capabilities
which ensure security on accessing services and on communicating data, but
they often lack of data protection from direct malicious accesses at system level.
It is mandatory to guarantee data protection mechanisms in order to deny data
intelligibility to unauthorized users, even when they are (local) system adminis-
trators.

The goal of our work is to provide a software mechanism capable to store
data in multi-Cloud environment in a secure way, by giving an answer to the
confidentiality and integrity issues of information and data disseminated and
stored in remote distributed machines all around the world. With SSME, we
intend to introduce the above-mentioned data protection mechanism by com-
bining both symmetric (AES256) and asymmetric encryption (RSA). Moreover,

mscarpa@unime.it



330 R. Di Pietro et al.

users can use a dynamic management of both the fragmentation schema and
the pool of Cloud storage services to use to create their own multi-Cloud envi-
ronment whenever they want to store a file on the Cloud. In our proposal, all
client-side configurations are totally invisible on the server-side. Each run of the
SSME application is tracked nowhere on the system, neither on the physical disk
of servers. By using the Trusted Control Service (TCS, see the Sect. 4.1), users
are able to integrate Cloud services they trust for the significant Cloud comput-
ing functionalities of authentication and backup-storage. This greatly increases
their confidence in using the SSME application.

Many works in literature deal with Cloud and multi-Cloud storage systems
using cryptographic data splitting. In the next Section we present the back-
ground and how the already existing approaches and solutions differ from the
SSME.

3 Related Work

In [2] the authors present an architecture for a cryptographic storage service.
It consists of four components: a server which processes and encrypts (AES256)
data before it is sent to Cloud, a private Cloud that holds the meta-data infor-
mation, and two Clouds that respectively archive one half of each user’s file. The
authors assume that the remote server is trusted without specifying any informa-
tion on “how” this trustiness is implemented. The meta-data information (e.g.,
passwords, secret keys of each files, encrypted access paths) are securely stored
in the private Cloud. If compared with our dynamic approach which allows to
specify the size of the split fragments, here data splitting is statically fixed on
half of each user’s file.

In [1] the authors propose a new method for securing the user’s data using the
multi-Clouds in an untrusted mobile Cloud environment. This method splits data
into segments that are successively encrypted, compressed and distributed via
multi-Clouds while keeping one segment on the mobile device memory. Keeping
one segment in the user’s device will prevent any attempt to recover the dis-
tributed data, thus to avoid the grabbing of all the segments together with the
key by possible unauthorized users. In contrast to our approach, their solution
requires a Mobile Cloud Computing (MCC) architecture and keeps a segment
in each device.

In [9] the authors presents an architecture that makes the data splitting of
the uploaded file size by three. Their architecture consists of a System Database
and a Middleware for data slicing and merging, and for data encryption and
decryption. Also in this work data splitting is statically fixed on a third of
each user’s file. Another difference is they use the System Database to store
the information necessary for the Middleware operations, without to specify its
content (i.e., the type of information).

In [8] the authors propose a reliable storage system, TrustyDrive, that takes
care of both the document anonymity and the user anonymity. The system archi-
tecture consists of three layers: the end users which use a storage system as a

mscarpa@unime.it



Secure Storage as a Service in Multi-Cloud Environment 331

service that splits and encodes the files; the dispatcher, which provides an entry
point for both the end users and the Cloud providers; Cloud providers which pro-
vide different storage space in terms of costs and performances. At client side (the
end user) documents are split in blocks and for each block meta-data are asso-
ciated (user meta-data). The user breaks its meta-data into blocks to be sent to
the dispatcher which, in turn, computes missing information to store meta-data
blocks on Cloud providers. However, the authors do not provide a description
about the secure communication between end user-dispatcher and dispatcher-
Cloud provider. Moreover, differently from their architecture, our mechanism of
splitting and dissemination of the fragments is configurable by the user, which
is able to specify the size of the fragments and the pool of Cloud providers.

In [5] the authors present three different approaches for the parallel exploita-
tion of different Cloud storage providers using Redundant Residue Number Sys-
tem (RRNS) in order to enforce long-term availability, obfuscation and encryp-
tion. They conduct several experiments considering a real testbed in which a
client interacts with three different providers (i.e., Google Drive, Copy, Drop-
box). In contrast to our approach, their solution permits user to retrieve files
even if one of the Cloud storage providers previously used is not temporarily or
permanently available. On the other hand, similarly to our approach, providers
cannot access the files stored within them.

The TwinCloud client-side encryption solution presented in [3] focuses on the
secure sharing on Clouds without explicit key management. To this end, they high-
light the Public Key Infrastructure (PKI)-based solution problems, i.e., costs due
to get a certificate from a Certification Authority (CA) and PKI-infrastructure
maintenance. Differently from the TwinCloud solution, our architecture uses both
symmetric and asymmetric cryptography.

All the papers do not give specific information on how the keys are managed,
at least it is not described where the key are stored and how and who can access
them. Moreover, in the above-mentioned contributions, none of virtual access
points (e.g., gateway, dispatcher, server) to the various multi-Cloud environments
which represent the main nodes of the processing offer a scheme easily and
dynamically configurable by users. Neither adopts and/or describes the use of a
secure communication protocol for its communications nor works only in volatile
memory. It means that the processed data are not protected against insider
attacks [6].

4 Proposed SSME Architecture

Figure 1 shows a general scheme of the SSME architecture. It consists of a JAVA
client-server application which uses a stateless RESTfull approach for its com-
munication, where a client cooperates with the middleware where most of the
computation is done. The SSME middleware is, in turn, made up two main com-
ponents: a “Trusted Cloud Service” (TCS) implementing all the fundamental
interfacing functions with SSME clients, and a “Server” where all the middle-
ware file manipulations are provided.

mscarpa@unime.it



332 R. Di Pietro et al.

An SSME compliant application can work in two different modes: Upload
Mode and Download Mode.

Fig. 1. SSME architecture general scheme.

4.1 SSME Middleware

Trusted Cloud Service. The “Trusted Cloud Service” (TCS) is the
architectural component that provides some significant Cloud computing func-
tionalities to the SSME client-server application. It is composed in turn into a
two different sub-services: the “Identity Service” (IS) and the “Object Stor-
age Service” (OSS). As the name implies, the IS identifies the own trusted
Identity Service the user may want to adopt by running the SSME client-server
application. The IS, by exploiting its own token service mechanism, provides
authentication and authorization on Cloud for the SSME service requests. In
the same way, the OSS identifies the own trusted Object Storage Service that
the user may want to adopt by using the SSME Application. The OSS pro-
vides temporary backup needed during the SSME internal operations. The OSS
can also be used to store the encrypted JSON file that results as output of the
SSME application. This output file represents the only guiding light to retrieve
that particular file from the Cloud. We adopt the approach of externalizing the
main function of Identity and Object Storage because each SSME user could
have his/her own trusted Cloud services, for example personal or provided by
his company, and may want to use these in the SSME scenario. In our testbed
scenario, we adopt an OpenStack [7] compliant TCS.

SSME Server. All processing of the server are carried out without leaving any
trace on local storage (hard disk) because it works only in volatile memory. In
brief, the functions performed by the server are the following:

mscarpa@unime.it



Secure Storage as a Service in Multi-Cloud Environment 333

– uploading and downloading files to and from the TCS;
– fragmentation, recovery and merging of fragments to and from the Cloud

services which are part of the multi-Cloud environment used at the moment;
– decryption of the information contained in the Headers of the HTTP requests

received from the client;
– creation and encryption of the json-encrypted-file file which represents the

output of the Upload Mode. This file represents the only way to recover the
file from the Cloud.

4.2 SSME Client

In order to work, the client needs the presence of a mandatory JSON config-
uration file called json-conf-file file. For smooth functioning of our service, the
json-conf-file file must be filled in the proper way. As the name implies, the
json-conf-file file contains the information about the configuration of the client,
in particular:

– its internal settings (including the symmetric encryption key used);
– the communication with the Server (including the public key of the Server);
– the services that make up the TCS;
– the Cloud storage service providers which are part of the multi-Cloud envi-

ronment the user want to use.

In brief, the functions performed by the client, when working in either Upload
Mode or Download Mode, are the following:

– encryption of the file you want to send to the multi-Cloud environment;
– decryption of the file you want to receive from the multi-Cloud environment;
– encryption of the information contained in the Headers of the HTTP requests

sent from both the server and the TCS;
– decryption of the information contained in the Headers of the HTTP requests

received from both the server and the TCS.

Upload Mode. During the Upload Mode, the client reads the information
inside the json-conf-file file in order to instruct itself on how to contact the
service. According to the reported information, the client starts the process-
ing. The client sends to the server some HTTP requests according to the rule
described in Sect. 4.3. Once the server received all the needed information, it
elaborates them and returns to the client an AES256 encrypted JSON file, we
called json-encrypted-file file. The json-encrypted-file file contains all the relevant
information in order to retrieve and rebuild all the fragments scattered among
the Cloud storage services. Referring to the classical mythology, this file serves
as a modern Ariadne’s thread. In the absence of the json-encrypted-file file, or
if it is damaged, it is not possible to recover and rebuild the fragments stored
in the Cloud. The Upload Mode will return a json-encrypted-file file for each file
uploaded in the Cloud. The template structure of the json-encrypted-file file is
shown in Fig. 2.

mscarpa@unime.it



334 R. Di Pietro et al.

Fig. 2. The json-encrypted-file file template structure.

The structure is composed of two main parts: the field “File” and “Frag-
ments”. The field “File” contains the name of the original file (i.e. FileName),
the name of the container/directory where the fragments are stored inside the
Cloud storage services (i.e. DirName) and the dimension of the single fragment
(i.e. SliceSize). The field “Fragments” contains all the information needed to
retrieve all the fragments. This field is structured as a JSON vector. In the
actual implementation, the elements of this vector can assume three different
typology: dropbox, openstack, gdrive. Each of these, represents the typology of
the Cloud storage services used by our SSME testbed.

Download Mode. During the Download Mode, the client reads the informa-
tion inside the json-encrypted-file file to follow the Ariadne’s thread. The json-
encrypted-file file is related to the original file that the client wants to retrieve
from the Cloud. The client decrypts json-encrypted-file file by using the symmet-
ric key specified in the json-conf-file file and extracts the information contained
to process it. The client sends to the server all the information contained in
the json-encrypted-file file according to the rule described in Sect. 4.3. These
information are needed to the server in order to retrieve and rebuild all the
fragments of the file the user want to download from its own multi-Cloud envi-
ronment. These fragments were previously scattered among the Cloud storage
services during the Upload Mode.

After the Download Mode, the client will obtain its original file (still
encrypted). At this time, firstly the client deletes the json-encrypted-file file
related to the file just receive, then in order to remove all the fragments stored in
the multi-Cloud environment, the client sends some delete-fragment requests
to the server. In the end the client will decrypt the original file.

4.3 Communication Between the Client and the Server

All the HTTP communications between the client and the server are authen-
ticated using the token service provided by the chosen IS. In our testbed, we
used the token service provided by the OpenStack Identity Service v2.0 (Key-
stone). Each HTTP request sent by the client embeds some fields that contain
the information necessary to carry out a given task at the server side. All these
fields are symmetrically encrypted by using the AES256 algorithm. The key to
decrypt these fields is also embedded in each request inside a field called “key”.

mscarpa@unime.it



Secure Storage as a Service in Multi-Cloud Environment 335

The client encrypts this field by using the RSA asymmetric algorithm with a
key of 2048 bytes, by using the server’s public key. The server, through its own
private key, can decrypt the “key” field and using it to decrypt the content of all
the other fields stored in the HTTP request body. The server uses the symmetric
key received from the client to encrypt all the fragments before sending them to
the Cloud storage services. It is worth noting that the public key of the server
is known and is freely downloadable from the web.

5 Implementation Details

In this section deeper details on how client and server interact in the proposed
architecture are presented. Using the communication protocol here described it
is possible to design a client compliant with a public service based on SSME.

5.1 Client-Server Communication Protocol in “Upload Mode”

The communication phase between the client and the server is done in seven
different steps: (see Fig. 3)

1. First of all, in order to verify if the server is alive, the client sends to it an
HTTP request (1.A). If the test is successfully done (1.B), then the client
can move to the next step (2.A).

2. In order to be authenticated by the “Trusted Control Service” (TCS), the
client sends an authentication request to the “Identity Service” (IS) (2.A).
If the IS returns the token (2.B), which means that it is successfully authen-
ticated, then the client can move to the next step (3.A).

Fig. 3. Client-server communication protocol in “Upload Mode”.

mscarpa@unime.it



336 R. Di Pietro et al.

3. In order to test the validity of the Cloud storage services described in the
json-conf-file file, the client checks each of them. The client sends an HTTP
request to each of the Cloud storage services included in the list (3.A). If
a Cloud storage service returns a positive response (3.B), the client sends
another Cloud storage service test request (3.A), repeating the checking until
the end of the storage service list.

4. In order to put the file to store in our multi-Cloud environment on the OSS:
(a) firstly, the client sends an authentication request to the IS (4.A). If the

IS returns the token (4.B), then the client can move to the next step
(4.C);

(b) then, the client sends an HTTP request to the OSS (4.C). If the container
creation is successfully done (4.D), then the client can move to the next
step (4.E);

(c) finally, the client sends an HTTP request to the OSS (4.E). If the the
create-object request was successfully done (4.F), and the client can move
to the next step (5.A).

5. To start the server-side processing phase, the client sends an HTTP request to
the server (5.A). The server checks the received request by interrogating the
TCS (5.C), and if the request is successfully authenticated (5.D), then the
server starts the download of the file the user want to put on the multi-Cloud
environment (5.E) from the OSS. When the server completes the download
with success (5.F), it returns a response (5.B), and the client moves to the
next step (6.A).

6. In order to transfer all the information about the Cloud storage services to
the server, the client uses an HTTP request for each Cloud storage service
(6.A). Each request contains the information about a particular Cloud stor-
age service the client wants to transfer at that moment. The server checks the
received request by interrogating the TCS (6.C) and, if the request is success-
fully authenticated (6.D), the server returns a positive response (6.B), and
the client sends another Cloud storage service request, repeating the process
until the end of the Cloud storage service list.

7. To complete the server side processing phase, the client sends a split HTTP
request to the server (7.A). The server checks the received request by interro-
gating the TCS (7.C) and, if the request is successfully authenticated (7.D),
the server starts the splitting phase of the file just downloaded from the OSS.
After the splitting, the server sends each fragment to a different Cloud storage
service by following a random mechanism (7.E). If the upload-request for a
fragment is successfully done (7.F), the server sends another upload-request,
and so on, until the end. When the server has sent all the fragments to the
Cloud storage services, a delete-fragment HTTP request is sent to the OSS
(7.G) and, if successful (7.H) the server moves to the next step (7.B). At
the end, the server returns to the client the json-encrypted-file file (7.B).

5.2 Client-Server Communication Protocol in “Download Mode”

The communication phase between the client and the server is done in nine
different steps (see Fig. 4):

mscarpa@unime.it



Secure Storage as a Service in Multi-Cloud Environment 337

Fig. 4. Client-server communication protocol in “Download Mode”.

1. First of all, in order to verify if the server is alive, the client sends to it an
HTTP request (1.A). If the test is successfully done (1.B), then the client
can move to the next step (2.A) otherwise it completes.

2. In order to be authenticated by the “Trusted Control Service” (TCS), the
client sends an authentication request to the “Identity Service” (IS). The
client sends to IS an HTTP request with a JSON file containing its credentials
(2.A). If the IS returns the token (2.B) the client is successfully authenticated
and it can move to the next step (3.A).

3. In order to test if the Cloud storage services described in the json-encrypted-
file file are active and available, the client checks each of them. It sends an
HTTP request to each of the Cloud storage services included in the list.
All these requests (3.A) contain the information about a particular Cloud
storage service that the client wants to check. If the Cloud storage service
returns a positive response (3.B), which means that the Cloud storage-
service-test request was successfully done, the client sends another Cloud
storage-service-test request, and so on, until the end of the list.

4. To start the server side processing phase, the client transfers to the server
all the information about the fragments described in the json-encrypted-file
file. The client uses one HTTP request for each fragment. All these requests
contain encrypted parameters inside the headers (4.A). The server checks the
received request by interrogating the TCS (4.C). If the request is successfully
authenticated (4.D), the server uses the information contained in the request
to download fragment from the related Cloud storage service (4.E). If the

mscarpa@unime.it



338 R. Di Pietro et al.

Cloud storage service returns a positive response and a file (i.e. the fragment)
(4.F), meaning that the Cloud storage service download request was success-
fully done, the server confirm the successful completion to the client (4.B).
Then the client sends another slice request, and so on, until the end of the
fragments and the client can move to the next step (5.A).

5. To continue the server side processing phase, the client sends an HTTP
request to the server (5.A). The server checks the received request by interro-
gating the TCS (5.C). If the request is successfully authenticated (5.D), the
server start the merge operation of the fragments previously gathered server
side. When the server successfully completes the merge operation, it returns
a response (5.B).

6. To complete the recover of the file from the Cloud, the client sends an HTTP
request to the server (6.A). The server checks the received request by inter-
rogating the TCS (6.C). If the request is successfully authenticated (6.D),
the server uploads the file just merged on the OSS ((6.E)). When the server
completes the upload with success (6.F), it returns a response (6.B), and the
client can move to the next step (7.A).

7. In order to download the file from the “Object Storage Service” (OSS):
(a) firstly, the client sends an authentication request to the IS (7.A). If the

IS returns the token (7.B), the client can move to the next step (7.C);
(b) then, the client sends an HTTP request to the OSS (7.C). If the the

download-object request is successfully done (7.D), the client can move
to the next step (8.A).

8. Once the client receives the file from the OSS:
(a) firstly, the client sends an authentication request to the IS (8.A). If the

IS returns the token (8.B), the client is successfully authenticated;
(b) then, the client sends an HTTP request to the OSS (8.C). If the the

delete-object request is successfully done (8.D), the server moves to
the next step (9.A).

9. At the end, the client takes care to delete all the fragment scattered on the
Cloud storage service constituting the multi-Cloud environment. The client
sends an HTTP request to delete each of the fragments which are present in
the json-encrypted-file file. All these requests (9.A) contain the information
about a particular fragment the client wants to delete at that moment. If
the Cloud storage service returns a positive response (9.B), the client sends
another delete-fragment request, and so on, until the end. Then the client
can finish.

6 Performance Analysis

In order to evaluate the proposed system, we conducted several experiments by
considering the implementation of the SSME application as a Service in a real
scenario. The system was developed using the JAVA programming language for
both client and server sides. We started the SSME application server on a virtual
machine equipped with Ubuntu Server 14.04 and hosted on an IBM BladeCen-
ter LS21. Instead, the client machine used in our experiments is equipped with

mscarpa@unime.it



Secure Storage as a Service in Multi-Cloud Environment 339

the following hardware configuration: a CPU Intel(R) Core(TM) i7-4700MQ
2.4 GHz Dual-Core, 16 GB of central memory, Linux Ubuntu server 14.04.5 LTS
64 bit operating system and a SATA HD with 1 TB of disk storage. The middle-
ware interacts with eight different Cloud storage services among three different
Cloud storage providers: Google Drive (one instance), Dropbox (four instances)
and OpenStack Swift (three instances). In our experiments, we considered dif-
ferent file sizes in each performed test: specifically, we used files from 10 MB
to 2 GB. Therefore, we split each of them in fragments with two different size:
10 MB and 100 MB (this latter with large files at least 500 MB).

In Upload Mode, performance analysis consists in evaluating: the system
response time (Overall), the encryption time (Encryption) and the time due to
splitting and fragment dissemination (Split). In Download Mode, performance
analysis consists in to evaluate: the system response time (Overall), the time to
receive and merge all the fragments to recompose the original file (Merge), and
the decryption time of the file just recomposed (Decryption).

We repeat each experiment 30 times and analyzed the collected data consid-
ering 95% as confidence level.

Figures 5 and 6 show a graphical representation of the monitored times, from
500 MB to 1 GB as file size, in Upload Mode and the Download Mode respectively.
We did not depict the results obtained with lower file size only to make clearer
the graphs without introducing any further information. As can be noted the
system response time linearly increases with the file size both in Upload Mode
and Download Mode and independently on the fragment size used for splitting
the files. Both in Upload Mode and Download Mode, the impact of encryption
and decryption, respectively, turn out to be negligible with respect the overall
response time. When in Download Mode also the merge phase does not affect
the performance, instead the splitting phase has an impact on the overall time
in Upload Mode. In particular, in Upload Mode (Fig. 5)

500 600 700 800 900 1000 1100 1200
size (MB)

0,00

1,00×10
5

2,00×10
5

3,00×10
5

4,00×10
5

5,00×10
5

6,00×10
5

7,00×10
5

8,00×10
5

9,00×10
5

1,00×10
6

tim
e 

(s
ec

)

Overall
Encryption
Split

(a) Fragment Size = 10MB

500 600 700 800 900 1000 1100 1200
size (MB)

0,00

1,00×10
5

2,00×10
5

3,00×10
5

4,00×10
5

5,00×10
5

6,00×10
5

7,00×10
5

8,00×10
5

9,00×10
5

1,00×10
6

tim
e 

(s
ec

)

Overall
Encryption
Split

(b) Fragment Size = 100MB

Fig. 5. Measured times in Upload Mode.

mscarpa@unime.it



340 R. Di Pietro et al.

– encryption assumes a value between 1.5% and 5% of the overall time depend-
ing on the file size,

– Splitting and Fragments Dissemination is between 49% and 74% of the overall
time depending on the file size.

In Download Mode (Fig. 6),

– Receive and Merging affects the Overall Time between 2.7% and 11% depend-
ing on the original file size.

– Decryption affects the Overall Time between 3.8% and 8% depending on the
original file size.

500 600 700 800 900 1000
size (MB)

0,00

5,00×10
4

1,00×10
5

1,50×10
5

2,00×10
5

2,50×10
5

3,00×10
5

3,50×10
5

4,00×10
5

4,50×10
5

5,00×10
5

tim
e 

(s
ec

)

Overall
Merge
Decryption

(a) Fragment Size = 10MB

500 600 700 800 900 1000
size (MB)

0,00

5,00×10
4

1,00×10
5

1,50×10
5

2,00×10
5

2,50×10
5

3,00×10
5

3,50×10
5

4,00×10
5

4,50×10
5

5,00×10
5

tim
e 

(s
ec

)

Overall
Merge
Decryption

(b) Fragment Size = 100MB

Fig. 6. Measured times in Download Mode.

In both cases, the results show that the Overall Time improves in perfor-
mance when greater fragment sizes are used. For example, in Upload Mode, this
trend is confirmed for 800 MB file size: the average value is 646 s for 10 MB
fragment sizes and 505 s for 100 MB fragment sizes. We had a similar trend in
Download Mode using the same file: the average response time is 382 s when
10 MB fragment size is used and 237 s with 100 MB.

7 Conclusion and Future Work

This work presents and describes the SSME architecture to provide Secure Stor-
age in multi-Cloud Environment. The architecture proposes to combine symmet-
ric and asymmetric cryptography by offering a dynamic fragmentation schema to
users which guarantees protection against insider attacks. In order to generate
encrypted data while storing on multi-Cloud Environment, the symmetric cryp-
tography is directly applied to the data on the client-side. The asymmetric cryp-
tography (server public key) is used to encrypt sensitive information of HTTP
requests Headers, which is being exchanged in the various steps described in the

mscarpa@unime.it



Secure Storage as a Service in Multi-Cloud Environment 341

Sect. 4.3. The SSME architecture has been developed and evaluated by consider-
ing the implementation of the SSME application as a Service in a real scenario.
In future, we plan to release the SSME application as a public service and, based
on it, to realize an Android Mobile Application and desktop application as SSME
clients in order to show the effectiveness and the flexibility of our approach.

References

1. Alqahtani, H.S., Sant, P.: A multi-cloud approach for secure data storage on smart
device. In: 2016 Sixth International Conference on Digital Information and Com-
munication Technology and its Applications (DICTAP), pp. 63–69, July 2016

2. Balasaraswathi, V.R., Manikandan, S.: Enhanced security for multi-cloud storage
using cryptographic data splitting with dynamic approach. In: 2014 IEEE Inter-
national Conference on Advanced Communications, Control and Computing Tech-
nologies, pp. 1190–1194, May 2014

3. Bicakci, K., Yavuz, D.D., Gurkan, S.: Twincloud: a client-side encryption solution for
secure sharing on clouds without explicit key management. CoRR abs/1606.04705
(2016)

4. Bradshaw, D., Cattaneo, G., Lifonti, R., Simcox, J.: Smart 2013/0043 - uptake of
cloud in Europe. Technical report, IDC EMEA, June 2015

5. Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Adding long-term availability, obfus-
cation, and encryption to multi-cloud storage systems. J. Netw. Comput. Appl. 59,
208–218 (2016)

6. Gunasekhar, T., Rao, K.T., Basu, M.T.: Understanding insider attack problem and
scope in cloud. In: 2015 International Conference on Circuits, Power and Computing
Technologies (ICCPCT-2015), pp. 1–6, March 2015

7. OpenStack: Official web site. https://www.openstack.org/. Accessed 28 June 2017
8. Pottier, R., Menaud, J.M.: Trustydrive, a multi-cloud storage service that protects

your privacy. In: 2016 IEEE 9th International Conference on Cloud Computing
(CLOUD), pp. 937–940, June 2016

9. Vaidya, M.B., Nehe, S.: Data security using data slicing over storage clouds. In: 2015
International Conference on Information Processing (ICIP), pp. 322–325, December
2015

mscarpa@unime.it

https://www.openstack.org/

