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Abstract—Recently, the increased competition in song recog-
nition has led to the necessity to identify songs within very huge
databases compared to previous years. Therefore, information
retrieval technique requires a more efficient and scalable data
storage framework. In this work, we propose an approach
exploiting K-means clustering and describe strategies for im-
proving accuracy and speed. In collaboration with an audio
expert company providing us with 2.4 billion fingerprints data,
we evaluated the performance of the proposed clustering and
recognition algorithm.

I. INTRODUCTION

Song recognition is a process of identifying a song segment
either from a digital or an analogue audio source. There are
different applications of such system; song rankings based
on radio/TV broadcasting or streaming, protection of song
copyright, or automatic recognition of songs a person wishes
to identify while listening to it. Important information such
as song title, artist name, and album title can be provided in
an instant. Given the high demand for such an application,
several approaches have already been studied based on songs
fingerprinting recognition such in [1], [2], [3], [4], and [5].
Nowadays, the state of the art of recognition techniques are
those developed by Shazam [6], [7] and SoundHound [8], [9].
These services are widely known from their mobile device
applications.

Recently, there has been a huge increase in the number
of songs in the music industry [10]. With large datasets, it
has becoming more difficult to manage and identify songs
using a traditional relational database management system.
Common linear search technique which checks the presence
of every fingerprint in an array one at a time has a noticeable
decrease in performance for large datasets [11]. Therefore,
the information stored requires a scalable database framework
to satisfy the execution time, memory use and computational
resources for retrieval purpose [12].

K-means is one of the most common algorithms used in
clustering data. Clustering is a method of grouping data into
adjacent partitions so that objects with similar features to each
other will collate into the same clusters [13]. Once the groups
are defined, any new data can be easily assigned to the correct
group [14]. Based on the clusters, fingerprints recognition will
be narrowed into a smaller search space which benefits much
faster response.

In this research, we proposed a K-means clustering for
song fingerprint collections in MongoDB. We also provide the
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recognition algorithm for song fingerprints from the clusters
and next, we evaluate the performance and accuracy of our
recognition approach using a real-time input stream audio.
However, we do not provide any audio fingerprint generation;
instead, we focus on the analysis of data distribution and
classification of song fingerprint database in order to improve
the recognition method.

The paper is organized as follows: Section II, summarizes
the current work and systems from a project collaboration with
a company working in the audio processing field. In Section
III, we have analyzed the songs fingerprints database provided
by the company. In Section IV, we described the technique
for deploying K-means clustering in MongoDB. The songs
information retrieval and recognition method are described in
Section V; whereas the evaluation of our implemented work is
presented in Section VI. Finally, Section VII proposed some
future work and planning.

II. CURRENT WORK FOR SONG DATABASE PLATFORM

This work borns in the context of a collaboration with a
company specialized in real time parallel songs recognition.
The fingerprint database collection provided by the company
was used in this research. The main objectives of the collabora-
tion were to gain insight into the industrial needs and problem
in this domain. However, the company is anonymous due to
legal privacy and confidentiality agreement which is still in
the midst of negotiation. In the next section, we discuss the
current framework and challenges.

A. Song Fingerprint Database

MongoDB is a Non Structured Query Language (NoSQL)
database structure, which allows data collection to be stored in
an array or JavaScript Object Notation (JSON) like structure
[15]. Therefore, each record will have more information stored
without constrains of a pre-defined field such as a relational
database.

Currently, we acquired a collection of fingerprints used
in actual songs recognition. At present, we are not able to
reveal the technique used for generating these fingerprints. The
representation values of the fingerprints are as below:

o Each song is represented by a sequence of fingerprints.

o Each fingerprint is an integer value.

o Each fingerprint represents a chunk of real audio play-
time; we denote its time length with §.
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o The database contains hundred thousand songs which are
associated with approximately 2.4 billion fingerprints.

This large number of fingerprints are stored in a single
collection and sorted accordingly by the song number (key).
Here, the main issue during retrieval is attributed to non-
classification of boundaries for the fingerprints values which
would result in an exhaustive search; this is due to the fact that
we want to recognize songs from a continuous songs streaming
without any information on their boundaries.

B. Recognition Approach in Real-Time Broadcast Stream

For a successful song information retrieval, it is essential to
have robust and fast recognition. Major clients such as music
labels, producers, promoter, radio stations require information
on trending songs, airtime schedule, and song versions. Hence,
they demand an application that is capable of producing a fast
and accurate information. For this reason, the company has
developed an application that monitors and listen to several
radio broadcast channels in real-time (on air FM/AM and in
online streaming). These sources may include noise distortion,
tempo and pitch shift.

The legacy solution was by pre-loading all fingerprints data
into central memory for faster recognition. Currently, they
implemented two version; one with a 32-bit system which runs
on seven 1.5 GB of central memory per instances. Meanwhile,
the 64-bit system run on a single instance with the usage of 12
GB of central memory. However, the drawback of this method
is that it could not accommodate the increasing number of
fingerprints in the future. To overcome it, we have proposed a
more scalable big data framework using MongoDB K-means
clustering. In addition, a new recognition algorithm also was
required for the new clustered collection. We also compared
the performance from both the legacy system (non-clustered)
and the new clustered database.

III. FINGERPRINTS DISTRIBUTION ANALYSIS

We performed a fundamental analysis of data using his-
tograms. The purpose of this analysis was to have a represen-
tation of the fingerprint value and range. Apart from that, this
analysis provided justification for using the K-means method.

Sample No. \ Total fingerprints \ Selection Segments

1 2104 Single random song
2 2-10° Sorted by song keys
3 2-106 Sorted by song keys
4 2. 10° Random
5 2107 Random
6 2-10° Complete

TABLE I: Songs fingerprints datasets

The first approach consisted of extracting datasets samples
in ranges such as TABLE I. The result shown in Fig. 1 is based
on the overall 2.4 billion samples. The X-axis describes the
fingerprint value range, while Y-axis describes the frequency
of fingerprints falling into equally spaced bins between 512
and 4.2 - 10° and steps of 1024. We obtained a near identical
frequency distribution of fingerprints for all the samples from
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Fig. 1: 2.4 - 10° Fingerprint distribution

TABLE 1. We concluded for this particular datasets, that at
any given sample it would have similar fingerprint distribution.
This is based on the evidence of similar pattern characteristic:

o A mirror axis between the range 2.0 - 10° and 2.5 - 10°
approximately half position of the overall dataset.

o Two maximum peaks at near range 1.5-10° and 3.0-10°.

¢ The maximum and minimum boundaries value ranges
between 0 and 3.0 - 10°.

Fingerprint frequency diagram suggests us that fingerprint
distribution is not uniform and it could be modelled by a
multimodal distribution, thus the K-means clustering approach
could be effective.

Focusing on this findings, we were able to perform the K-
means computation to obtain a clustered fingerprint collec-
tion associated with centroids value. In the next section, we
provided requirements and implementation of the clustering
method.

IV. MONGODB AND K-MEANS CLUSTERING

K-means clustering is used when we have unclassified data.
It performs an unsupervised algorithm for a large volume
of data. Working with the fingerprint collections that we
have, K-means classification organizes the fingerprints into
subgroups. As such, those objects in the same group (clusters)
are more similar to each other. Although K-means is mostly
used for high dimensional data classification, in this research,
we take advantage of the centroid value as distance point
when performing a nearest computation. The basis for using
K-means is that we require to produce clusters of relatively
uniform datasets size.

K-means clustering algorithm partitions n data into k clus-
ters in which each data is associated to the cluster with the
nearest mean intra-cluster distance. Thus, it produces many
different distinct clusters. The main purpose of K-means is
thus to minimize intra-cluster distances. This is obtained by
defining the index J as follows

k ny )
J=3 3 Ml Gl (1)

j=11i=1
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where C;, with 1 < j < k is the mean value of the j-th cluster,
and xE] ) represents a fingerprint falling in the cluster j. Usually
the C'; are named centroids. The K-means algorithm discovers
the sets of k clusters, k + 1 boundaries and k centroids,
minimizing the optimization index J. More formally, it com-
putes the set of fingerprints partitions P = {Py, Pz, ..., Pi}
resulting from

i 2
argmin J (2)

The centroids C; of the clusters are used as reference points.
However, we are required to define the number of clusters k
prior computation.

Fig. 2, shows the overview of the clustering process in
our implementation. We started with the original collection of
the fingerprints stored in MongoDB. Based on the fingerprint
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Fig. 2: K-means clustering implementation overview

distribution analysis, we select a reduced data sample of
2 -10% (random segment) from the overall collection. There
is no specific limitation of data can be performed by the K-
means. However, this depends on the computing resources,
time constraint, and other hardware specification.

Further on, once the computation has completed, centroids
values are produced and they represent a key value for the
cluster collection in MongoDB. We then perform a computa-
tion of fingerprints nearest distance to the centroids value and
migrate the data to subgroup collections.

A. Stepwise Implementation of K-means

In our experimentation, we aimed to produce a number of
k = 10,000 clusters with key centroids values as reference.
In the next phase, we distributed the song fingerprints into the
new clustered collections.

1) Batch Data Processing:
In managing a significant amount of data for K-mean compu-
tation, the initial approach was to divide the first instances into
blocks by applying a segmentation of data. We then dumped
the model from the computation using the pickle data structure
in python. Subsequently, we used the previous model values
and incrementally processed them until all the fingerprint
datasets were processed. Code Listing 1 shows the steps of
implemented algorithm using python scikit-learn library for
K-means [16].

1) The algorithm selects 10,000 points as first elements of

the n_cluster centres.

2) We chunk 100,000 of fingerprints and load them into
memory and, using these data, we feed to the K-means
computation. Each cluster centre was recomputed as the
average of the points in that cluster.

3) computation at item 2) is repeated until no further
changes in the assignment of fingerprints to clusters is
experimented.

def dumpFitKmean(n_clusters ,i,chunk,chunksize):

if i==1:
X = chunk
mbk = KMeans(init="K—means++',n_clusters=int(n_clusters), n_init=1,

random_state=42)

else:
X = chunk
mbk = getFitKmean (i—1)
mbk. fit (X)

pickle .dump(mbk, open(”pickelDump”+str (i)+”.p”, "wb”))

def getFitKmean(i):
dumpFile = ”pickelDump”+str (i)+”.p”
mbk = pickle.load(open(dumpFile, "rb”))
return mbk
if __name__ == "__main__"
i=1
chunksize = 100000
for chunk in pd.read_csv(filename, chunksize=chunksize ,
dumpFitKmean(n_clusters ,i,chunk, chunksize)
i=i+l

header=None) :

Listing 1: Python k-mean computation

2) Building Cluster Segmentation in MongoDB:
Once the centroid values were produced, we computed the
distance of each fingerprint f(9) to each centroid to find its
partition association by evaluating the following optimization
problem:

. k X
pt¥ = argmin 1D = ¢yl 3)

In obtaining the distance for a fingerprint f(*), we perform
an Euclidean distance between f(9) and every centroid value
C;. From the distance function list, we applied argmin to get
the minimum distance. Thus, we would acquire the fingerprint
association p(*) with its matching cluster Py

V. SONG RECOGNITION AND INFORMATION RETRIEVAL

In the recognition phase, we need to identify the fingerprints
sequence in our clustered fingerprints database. The algorithm
performs a sequential window search in two stages. First, we
associate each fingerprint in the query sequence to the nearest
centroid value. Then, we perform an in-depth search within
the associated cluster values and we obtain a set of candidates.
Here, we apply the similar algorithm as the clustering process
to obtain an acceptable accuracy in results.

The advantage of the adopted cluster organization is that
it is possible to apply a binary search technique [11]. It
first finds the position of a particular fingerprint query value
within a sorted collection. In each step, this method examines
and search the nearest key value with respect to the middle
centroids key value of the given sorted fingerprint.

A. Real-Time Slide Window

Fig. 3 depicts the approach we implemented for identifying
a song based on a stream of input fingerprints. As there shown,
we chunk the fingerprint query stream into sizable windows
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Fig. 3: Fingerprint Windows Slides Recognition

segments. This method of sliding window is a standard tech-
nique in information retrieval for detecting matching sequence.
Each window represents a segment of time in the current song.
As earlier mentioned, each fingerprint represents § time instant
of an audio source. Configurable fingerprints windows sizes,
e.g., 500, 1000, 2000, 3000, 5000 or 6000 which translate
to the actual time segment are important. We suggest using
a window size not exceeding 6000 fingerprints such as this
represents about 60 seconds of actual audio.

Each fingerprint is not unique; thus it could appear in
several songs and then it will yield a set of song candi-
dates. However, by means of occurrences scoring, we will
eliminate such candidates and obtain a winner. We segment
a sub-window of recognition for acquiring fingerprint search
from database cluster. This sub-window contains 3/4 of the
fingerprints included in a window. The purpose of this sub-
segment window is to reduce the recognition time. Moreover,
the selected fraction size weight is sufficient to represent the
overall fingerprints in the window.

B. Fingerprint Cluster Identification and Recognition

In order to reach an accurate result in the search, we set two
stages in the recognition process for each fingerprint query.
Firstly, by using the following eq. (4)

X k .
p® = argmin g™ — Gy, (4)

we compute the cluster p(¥) which contains the nearest cen-
troid. There, the fingerprint values ¢*) is compared with every
centroid value C; and it evaluates to the index p(*) of cluster
with the nearest centroid to ¢(Y). When the cluster p(® is
identified, we select the nearest fingerprint to ¢(*) inside it
by evaluating

, ) i )
wft = argmin||g — f7], )

thus selecting a single fingerprint value wf(®). A set of songs
stored in the collection and containing w f(*) in their sequence
will be associated to each winner fingerprint w f(*). For these
songs, we set to “1” an entry in a column array having an
entry for each song to recognize. A sequence of N arrays is
collected into the matrix S. Thus a generic element Sy, ; is 1
whether the song k is a found candidate at the ¢-th position
inside the N long window, or O otherwise.

C. Candidates Scoring

In the previous step, we have obtained a list of candidate
songs from a single fingerprint query. However, we need

to evaluate the overall result within the fingerprint sequence
in the specified window. To this purpose, we compute the
frequency F,gn) of each song found in a window (indexed n)
of N fingerprints by evaluating

N
BV =" Sk (©)
i=1

The highest value of song frequency in the n-th windows will
denote the winning candidates in that window segment. We
evaluate it solving the following problem:

ws™ = argmax F,gn) @)
While the winning song ws™ = ws™~1) we increment
the value of a specific counter. As soon as the winning
song ws(™ # ws™ D, we can evaluate the number W
of subsequent windows with the same winner and reset the

counter to 1. As a consequence, the airtime song duration is
evaluated as d = N - W - 6.

VI. EVALUATION AND PERFORMANCE

Given the previous recognition result of non-clustered ap-
proach, we set out to evaluate the performance of the new
clustered database recognition. Theoretically, the performance
in terms of memory occupancy should improve as the ob-
jective was to reduce the search space within the database.
However, we should prove we haven’t a degradation in terms
of recognition accuracy.

A. Recognition Accuracy

To evaluate the accuracy, we tested our approach on 11
minutes of a mix stream audio. The streaming audio is then
converted into a sequence of fingerprints with no indication of
changes in the song. This set of a query will test the robustness
of the recognition algorithm.

Windows size | Precision | Recall | Airtime accuracy

Non — cluster 80% 20% 80%
500 80% 20% 80%
1000 78% 30% 78%
2000 78% 30% 75%
3000 7% 50% 2%
5000 75% 60% 68%
6000 75% 80% 65%

TABLE II: Precision, Recall and Airtime Accuracy Results

For the song recognition, we had to make a trade-off
between retrieving a high recall and avoiding false positives.
In TABLE II, the window size selection determines the recall
percentage as the larger window size, the higher the recall
obtained. Nevertheless, we were able to maintain the precision
as similar to the non-clustered database. Though 80% of
the same accuracy, this validates the result match. Also, we
achieved a good result of airtime accuracy. The remaining 20%
unidentified result was due to the pitch shifting audio query
which is another interesting research area within this field.
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B. Recognition Speed

Once we have established a positive result of the recog-
nition, the most distinct performance compared to the non-
clustered is the recognition speed. These findings prove that a
similar positive result could be achieved in a shorter period of
time. We measure the capability of the algorithm with different
sets of windows sizes configuration.

1) Windows Performance: In Fig. 4, we observed the per-
formance in different windows sliding segments. Each window
segment will yield a result of the final candidates’ songs. The
changes in song result for each window perform the best with
windowsize = 6000. The completion time for each song
result superseded others window sizes. However, as mentioned
earlier the threshold of windows size is important as it would
affect the precision and recall results.

Windows Performance

=500
1000
©-2000
>-3000
#5000
-=-6000

Songs
=] - N «w - o N ~ = -1

S
W« Minutes

Fig. 4: Windows Sizes Performance Comparison

2) Overall Performance: In Fig. 5 shows the overall time
completion for the 11 minutes audio stream. We achieved
an outstanding performance for the 6000 window size. The
total time of recognition is 2.81 minutes. There is a 94.6%
improvement in speed from the non-cluster recognition of 52
minutes.

Overall System Performance

Non-Cluster
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B 380
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Fig. 5: Speed comparison using different window sizes and non-
cluster recognition

VII. CONCLUSIONS

We are well aware of findings within song recognition
and fingerprint from other researchers which are established
such as Shazam [7] and SoundHound [8]. We acknowledge
the implementation of clustering using K-means for the ex-
periment conducted with actual fingerprint database with 2.4

billion fingerprint collection. We would like to emphasize that
a database of this size rarely appear in the scientific literature
although there is evidence of its existence.

The next important part was the performance of the recog-
nition implementation. Although the initial K-means compu-
tation for the collection is resource demanding, we achieved
a significant speed performance in the end. Besides, the
configuration and algorithm proposed can contribute to a new
perspective within the song recognition field.

Part of the extension plan of this research consists of clusters
collection distribution in a cloud platform using Sharding in
MongoDB [15]. A clustered collection can take advantage of
storage distribution for a hybrid storage configuration setup for
faster retrieval using SSD and cost saving using HDD storage.

We have a plan also on evaluating our performance with
other states of the art song recognition method such as
Shazam [7] and Labrosa [3].The discussion we provided would
facilitate better understanding of the topic as well as improving
the design and use of such systems.
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